jzoj 4780. 【GDOI2017模拟9.14】三角形

question

这题题目全是图,就不贴了(感觉好多题都是图。。。)

Solution

这题我用的是水法
正解是“有技巧暴力”

水法就是将n2暴力优化一下,正确率(玄)

我们先求已知点的贡献,再求添加点的贡献。

我们设h[i]表示横坐标为i的点的个数,l[i]表示纵坐标为i的点的个数。
那么已知点的贡献就是∑(h[a[i].x]-1)*(l[a[i].y]-1)(1<=i<=n)
我们发现我们添加一个点,这个点不仅可以是直角边的交点,还可能是斜边的一个顶点。
所以我们设sh[i]表示横坐标为i的点的l[纵坐标]的和,sl[i]反之。
然后,就是水法了。
我们将l[],h[]排个序,然后每个取前100大的值的位置暴力配对取最大值,加上已知点的贡献即为答案。

code

#include<cstdio>
#include<algorithm>
#define N 500010
#define ll long long
using namespace std;
struct dian{int x,y;}a[N];
struct node{int v,fr;}e[N<<1],g[N<<1],hp[N],lp[N];
int n,h[N],l[N],cnt=0,tot=0,tail[N],head[N];
int hsum[N],lsum[N],maxh=0,maxl=0;
ll ans=0,ans1=0;

inline int read()
{
	int x=0; char c=getchar();
	while (c<'0' || c>'9') c=getchar();
	while (c>='0' && c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
	return x;
}

void add(int u,int v) {e[++cnt]=(node){v,tail[u]}; tail[u]=cnt;}

void add1(int u,int v) {g[++tot]=(node){v,head[u]}; head[u]=tot;}

ll gtot(int i,int j)
{
	bool bz=0;
	for (int p=tail[i];p;p=e[p].fr)
		if (e[p].v==j) {bz=1; break;}
	if (bz) return 0;
	return (ll)hsum[i]+lsum[j]+(ll)h[i]*l[j];
}

int cmp(node x,node y) {return x.v>y.v;}

int main()
{
	freopen("triangle.in","r",stdin);
//	freopen("triangle.out","w",stdout);
	n=read();
	for (int i=1;i<=n;i++)
	{
		a[i].x=read(),a[i].y=read();
		h[a[i].x]++,l[a[i].y]++;
		if (h[a[i].x]>h[maxh]) maxh=a[i].x;
		if (l[a[i].y]>l[maxl]) maxl=a[i].y;
		add(a[i].x,a[i].y),add1(a[i].y,a[i].x);
	}
	for (int i=1;i<=n;i++)
		hp[i]=(node){h[i],i},lp[i]=(node){l[i],i};
	sort(hp+1,hp+n+1,cmp);
	sort(lp+1,lp+n+1,cmp);
	for (int i=1;i<=n;i++)
	{
		ans+=(h[a[i].x]-1)*(l[a[i].y]-1);
		hsum[a[i].x]+=l[a[i].y]-1;
		lsum[a[i].y]+=h[a[i].x]-1;
	}
	for (int i=1;i<=min(100,n);i++)
		for (int j=1;j<=min(100,n);j++)
			ans1=max(ans1,gtot(hp[i].fr,lp[j].fr));
	/*
	for (int i=1;i<=n;i++)
		for (int j=1;j<=n;j++)
			ans1=max(ans1,gtot(i,j));
	*/
	printf("%lld\n",ans+ans1);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值