jzoj 4638. 第三条跑道

Question

给你一个区间,有修改和查询操作:
修改:将一段区间乘以x
查询: ∏ i = l r φ ( a [ i ] ) m o d 1 0 8 + 7 ∏_{i=l}^rφ(a[i]) mod 10^8+7 i=lrφ(a[i])mod108+7
( a [ i ] , x &lt; = 600 , n &lt; = 10000 ) (a[i],x&lt;=600,n&lt;=10000) (a[i],x<=600,n<=10000)

Solution

我们一看到有欧拉函数,就想到了关于欧拉函数的一些性质:
φ ( x ) = x ∗ ( 1 − 1 / p 1 ) ∗ ( 1 − 1 / p 2 ) ∗ . . . ∗ ( 1 − 1 / p n ) φ(x)=x*(1-1/p1)*(1-1/p2)*...*(1-1/pn) φ(x)=x(11/p1)(11/p2)...(11/pn)
就是这个性质,我们可以将答案分成两个问来求:
一个是就区间a[i]的乘积,另一个就是包含这个质数的个数。
因为模数是个质数,所以说可以用费马小定理来实现。
这两个都可以用线段树+懒惰标记来实现,而且600以内的质数就只有109个,所以时间复杂度可以保证 ( 109 ∗ n l o g n ) (109*n log n) 109nlogn

Code

#include<cstdio>
#include<cstring>
#define N 10010
#define ll long long
#define mo 100000007
using namespace std;
int prime[610],di[5],cnt=0;
ll t[N*4+10][110],lazy[N*4+10][110];
ll num[N<<3],lz[N<<3],ycl[110];
int n,a[N],q,opt,l,r,X;
bool bz[610],hav[N<<3];
ll ans=0;

inline int read()
{
	int x=0; char c=getchar();
	while (c<'0' || c>'9') c=getchar();
	while (c>='0' && c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
	return x;
}

ll ksm(ll x,int y)
{
	ll s=1;
	while (y)
	{
		if (y & 1) s=s*x%mo;
		x=x*x%mo,y>>=1;
	}
	return  s;
}

void find(int x)
{
	cnt=0;
	for (int i=1;i<=109;i++)
		if (x%prime[i]==0) di[++cnt]=i;
}

void update(int x,int l,int r)
{
	int mid=l+r>>1;
	for (int i=1;i<=109;i++)
		if (t[x][i]==r-l+1)
			t[x<<1][i]=mid-l+1,
			t[x<<1|1][i]=r-mid;
	hav[x<<1]=hav[x<<1|1]=1;
	hav[x]=0;
}

void change(int x)
{
	num[x]=num[x<<1]*num[x<<1|1]%mo;
	for (int i=1;i<=cnt;i++)
		t[x][di[i]]=t[x<<1][di[i]]+t[x<<1|1][di[i]];
}

void build(int x,int l,int r,int f)
{
	if (l==r)
	{
		num[x]=a[f];
		for (int i=1;i<=cnt;i++)
			t[x][di[i]]=1;
		return;
	}
	int mid=l+r>>1;
	if (f<=mid) build(x<<1,l,mid,f);
	else build(x<<1|1,mid+1,r,f);
	change(x);
}

void plus(int x,int l,int r,int fl,int fr)
{
	if (fl<=l && fr>=r)
	{
		lz[x]=lz[x]*X%mo;
		num[x]=num[x]*ksm(X,r-l+1)%mo;
		for(int i=1;i<=cnt;i++)
			t[x][di[i]]=r-l+1;
		hav[x]=1;
		return;
	}
	int mid=l+r>>1;
	if (lz[x]>1)
	{
		num[x<<1]=num[x<<1]*ksm(lz[x],mid-l+1)%mo;
		num[x<<1|1]=num[x<<1|1]*ksm(lz[x],r-mid)%mo;
		lz[x<<1]=lz[x<<1]*lz[x]%mo;
		lz[x<<1|1]=lz[x<<1|1]*lz[x]%mo; 
		lz[x]=1;
	}
	if (hav[x]) update(x,l,r);
	if (fl<=mid) plus(x<<1,l,mid,fl,fr);
	if (fr>mid) plus(x<<1|1,mid+1,r,fl,fr);
	change(x);
}

void gans(int x,int l,int r,int fl,int fr)
{
	if (fl<=l && fr>=r) 
	{
		ans=ans*num[x]%mo;
		for (int i=1;i<=109;i++)
			if (t[x][i]>0) ans=ans*ksm(ycl[i],t[x][i])%mo;
		return;
	}
	int mid=l+r>>1;
	if (lz[x]>1)
	{
		num[x<<1]=num[x<<1]*ksm(lz[x],mid-l+1)%mo;
		num[x<<1|1]=num[x<<1|1]*ksm(lz[x],r-mid)%mo;
		lz[x<<1]=lz[x<<1]*lz[x]%mo;
		lz[x<<1|1]=lz[x<<1|1]*lz[x]%mo; 
		lz[x]=1;
	}
	if (hav[x]) update(x,l,r);
	if (fl<=mid) gans(x<<1,l,mid,fl,fr);
	if (fr>mid) gans(x<<1|1,mid+1,r,fl,fr);
}

int main()
{
	freopen("runway.in","r",stdin);
//	freopen("runway.out","w",stdout);
	for (int i=2;i<=600;i++)
		if (!bz[i])
		{
			prime[++prime[0]]=i;
			ycl[prime[0]]=(i-1)*ksm(i,mo-2)%mo;
			for (int j=1;j<=600/i;j++)
				bz[i*j]=1;
		}
	n=read();
	for (int i=1;i<=40000;i++) lz[i]=1;
	for (int i=1;i<=n;i++)
		a[i]=read(),find(a[i]),build(1,1,n,i);
	q=read();
	while (q--)
	{
		opt=read(),l=read(),r=read();
		if (opt==0) X=read(),find(X),plus(1,1,n,l,r);
		else ans=1,gans(1,1,n,l,r),printf("%lld\n",ans);
	}
	return 0;
}
内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值