jzoj 1166. 树中点对距离

Description

给出一棵带边权的树,问有多少对点的距离<=\(len\)
100% \(2<=n<=10000,len<=maxlongint\)

Solution

这一题可以说是点分治的模板题了。
我们按照套路,先求重心,在计算答案。
如何计算答案?
设当前点为\(x\)
我们先\(O(n)\)搜一遍求出当前树的每个点的深度。
分类讨论:
经过\(x\),那么只需满足\(dep[a] + dep[b] <= len\)即可。
不经过\(x\),那么这个可以在那一颗子树中计算到。
所以,我们需要容斥,将不经过\(x\)的减掉。
由于他们到\(x\)还有相同的一段路径(设长\(length\)),所以要将他们的\(dep\)之和加上\(2*length\)

Code

#include <cstdio>
#include <algorithm>
#define N 10010
using namespace std;
struct node{int v, fr, l;}e[N << 1];
int n, len, rt, cnt = 0, ans = 0, tot;
int tail[N], siz[N], son[N], dep[N], size = 0;
bool bz[N];

inline int read()
{
    int x = 0; char c = getchar();
    while (c < '0' || c > '9') c = getchar();
    while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
    return x;
}

void add(int u, int v, int l) {e[++cnt] = (node){v, tail[u], l}; tail[u] = cnt;}

void getrt(int x, int fa)
{
    siz[x] = 1; son[x] = 0;
    for (int p = tail[x], v; p; p = e[p].fr)
    {
        v = e[p].v;
        if (v == fa || bz[v]) continue;
        getrt(v, x);
        if (son[x] < siz[v]) son[x] = siz[v];
        siz[x] += siz[v];
    }
    if (son[x] < tot - siz[x]) son[x] = tot - siz[x];
    if (son[x] < son[rt]) rt = x;
}

void getdeep(int x, int fa, int deep)
{
    dep[++size] = deep;
    for (int p = tail[x], v; p; p = e[p].fr)
    {
        v = e[p].v;
        if (v == fa || bz[v]) continue;
        getdeep(v, x, deep + e[p].l);
    }
}

int cal(int x, int num)//calculation
{
    size = 0, getdeep(x, 0, num);
    sort(dep + 1, dep + size + 1);
    int l = 1, r = size, s = 0;
    while (l < r)
    {
        while (dep[l] + dep[r] <= len && l < r) s += r - l, l++;
        while (dep[l] + dep[r] > len && l < r) r--;
    }
    return s;
}

void solve(int x)
{
//  printf("%d\n", x);
    bz[x] = 1;
    ans += cal(x, 0); 
    for (int p = tail[x], v; p; p = e[p].fr)
    {
        v = e[p].v;
        if (bz[v]) continue;
        ans -= cal(v, e[p].l);
        tot = siz[v], rt = 0, getrt(v, 0);
        solve(rt);
    }
}

int main()
{
    freopen("distance.in", "r", stdin);
    freopen("distance.out", "w", stdout);
    n = read(), len = read(); son[0] = 1e9;
    for (int i = 1, u, v, l; i < n; i++)
        u = read(), v = read(), l = read(), add(u, v, l), add(v, u, l);
    tot = n, rt = 0, getrt(1, 0);
    solve(rt);
    printf("%d\n", ans); 
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值