题目描述:
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0Return 6.
这道题最先想到的是采用动态规划,但是发现构造最大矩形的情况太多,没有适用的递推关系。受之前leetCode #84 - largeset rectangle in histogram的启发,可以发现对于矩阵的每一行都可以看做是一个直方图,然后对每一行都可以求一个最大矩形面积,然后再求出所有行中的最大矩形面积即可。同时要注意,每一行的直方图可以由上一行的直方图累计而来。
class Solution {
public:
int maximalRectangle(vector<vector<char>>& matrix) {
if(matrix.size()==0) return 0;
if(matrix[0].size()==0) return 0;
vector<int> temp(matrix[0].size(),0);
vector<vector<int> > dp(matrix.size(),temp);
for(int i=0;i<matrix.size();i++)
{
for(int j=0;j<matrix[0].size();j++)
{
dp[i][j]=matrix[i][j]-'0';
if(i>0&&matrix[i][j]=='1')
dp[i][j]+=dp[i-1][j];
}
}
int result=0;
for(int i=0;i<matrix.size();i++)
result=max(result,largestRectangleArea(dp[i]));
return result;
}
int largestRectangleArea(vector<int>& heights) {
int result=0;
for(int i=0;i<heights.size();i++)
{
if((i<(heights.size()-1)&&heights[i+1]<heights[i])||(i==heights.size()-1))
{
int min_height=heights[i];
int min_area=heights[i];
for(int j=i;j>=0;j--)
{
min_height=min(min_height,heights[j]);
min_area=min_height*(i-j+1);
result=max(result,min_area);
}
}
}
return result;
}
};