LeetCode #85 - Maximal Rectangle

题目描述:

Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.

For example, given the following matrix:

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 6.

这道题最先想到的是采用动态规划,但是发现构造最大矩形的情况太多,没有适用的递推关系。受之前leetCode #84 - largeset rectangle in histogram的启发,可以发现对于矩阵的每一行都可以看做是一个直方图,然后对每一行都可以求一个最大矩形面积,然后再求出所有行中的最大矩形面积即可。同时要注意,每一行的直方图可以由上一行的直方图累计而来。

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        if(matrix.size()==0) return 0;
        if(matrix[0].size()==0) return 0;
        vector<int> temp(matrix[0].size(),0);
        vector<vector<int> > dp(matrix.size(),temp);
        for(int i=0;i<matrix.size();i++)
        {
            for(int j=0;j<matrix[0].size();j++)
            {
                dp[i][j]=matrix[i][j]-'0';
                if(i>0&&matrix[i][j]=='1')  
                dp[i][j]+=dp[i-1][j];
            }
        }
        
        int result=0;
        for(int i=0;i<matrix.size();i++)
        result=max(result,largestRectangleArea(dp[i]));   
        return result;
    }
    
    int largestRectangleArea(vector<int>& heights) {
        int result=0;
        for(int i=0;i<heights.size();i++)
        {
            if((i<(heights.size()-1)&&heights[i+1]<heights[i])||(i==heights.size()-1))
            {
                int min_height=heights[i];
                int min_area=heights[i];
                for(int j=i;j>=0;j--)
                {
                    min_height=min(min_height,heights[j]);
                    min_area=min_height*(i-j+1);
                    result=max(result,min_area);
                }
            }
        }
        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值