首先要知道 因子和的公式
(1+p1+p1^2+`````+p1^a1)*(1+p2+p2^2+````+p2^a2)*```````````````````````````````````
道理很简单 组合上的小知识 让后就是求等比数列mod mo的事了 可以用乘法逆元求
不过这里有个trick 就是可能分解下的质数-1跟9901不互质 这里特别判断一下就可以
至于求逆元可以用快速幂(费马定理) 还有扩展欧几里得
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<sstream>
#include<string>
#include<climits>
#include<stack>
#include<set>
#include<bitset>
#include<cmath>
#include<deque>
#include<map>
#include<queue>
#define iinf 0x7f7f7f7f
#define linf 1000000000000000000LL
#define dinf 1e200
#define eps 1e-11
#define all(v) (v).begin(),(v).end()
#define sz(x) x.size()
#define pb push_back
#define mp make_pair
#define lng long long
#define sqr(a) ((a)*(a))
#define pii pair<int,int>
#define pll pair<lng,lng>
#define pss pair<string,string>
#define pdd pair<double,double>
#define X first
#define Y second
#define pi 3.14159265359
#define ff(i,xi,n) for(int i=xi;i<=(int)(n);++i)
#define ffd(i,xi,n) for(int i=xi;i>=(int)(n);--i)
#define ffl(i,r) for(int i=head[r];i!=-1;i=edge[i].next)
#define ffe(i,r) for(_edge *i=head[r];i;i=i->next)
#define cc(i,j) memset(i,j,sizeof(i))
#define two(x) ((lng)1<<(x))
#define lson l , mid , rt << 1
#define rson mid + 1 , r , rt << 1 | 1
#define mod 9901
#define pmod(x,y) (x%y+y)%y
using namespace std;
typedef vector<int> vi;
typedef vector<string> vs;
template<class T> inline void checkmax(T &x,T y)
{
if(x<y) x=y;
}
template<class T> inline void checkmin(T &x,T y)
{
if(x>y) x=y;
}
template<class T> inline T Min(T x,T y)
{
return (x>y?y:x);
}
template<class T> inline T Max(T x,T y)
{
return (x<y?y:x);
}
template<class T> T Abs(T a)
{
return a>0?a:(-a);
}
template<class T> inline T lowbit(T n)
{
return (n^(n-1))&n;
}
template<class T> inline int countbit(T n)
{
return (n==0)?0:(1+countbit(n&(n-1)));
}
lng Pow(lng x,lng y)
{
lng res=1;
if(x==-1) return 0;
while(y)
{
if(y&1)
res=(res*x)%mod;
x=sqr(x)%mod;
y/=2;
}
return res;
}
void f(lng a,lng b,lng &x,lng &y)
{
if(b==0)
{
x=1,y=0;
return ;
}
f(b,a%b,x,y);
lng t;
t=x;
x=y;
y=t-a/b*y;
}
lng a,b;
lng A,B;
lng p[2000],num[2000];
int main()
{
while(scanf("%I64d%I64d",&A,&B)==2)
{
lng res=1;
int y=0;
if(A==0)
{
printf("0\n");
continue;
}
for(lng i=2;i*i<=A;++i)
{
if(A%i==0)
{
p[++y]=i;
num[y]=0;
while(A%i==0)
A/=i,num[y]++;
}
}
if(A>1) p[++y]=A,num[y]=1;
for(lng i=1;i<=y;++i)
{
a=p[i],b=B*num[i];
if((a-1)%mod==0)
{
res=res*(b+1)%mod;
continue;
}
lng t,o;
f(a-1,mod,t,o);
t=pmod(t,mod);
res=(res*(Pow(a,b+1)-1))%mod*t%mod;
// res=(res*(Pow(a,b+1)-1))%mod*(Pow(a-1,mod-2))%mod; pow way
}
if(res<0) res+=mod;
printf("%I64d\n",res);
}
return 0;
}