poj 1845 Sumdiv

3 篇文章 0 订阅

首先要知道 因子和的公式

(1+p1+p1^2+`````+p1^a1)*(1+p2+p2^2+````+p2^a2)*```````````````````````````````````

道理很简单 组合上的小知识  让后就是求等比数列mod mo的事了 可以用乘法逆元求

不过这里有个trick 就是可能分解下的质数-1跟9901不互质 这里特别判断一下就可以

至于求逆元可以用快速幂(费马定理) 还有扩展欧几里得

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<sstream>
#include<string>
#include<climits>
#include<stack>
#include<set>
#include<bitset>
#include<cmath>
#include<deque>
#include<map>
#include<queue>
#define iinf 0x7f7f7f7f
#define linf 1000000000000000000LL
#define dinf 1e200
#define eps 1e-11
#define all(v) (v).begin(),(v).end()
#define sz(x)  x.size()
#define pb push_back
#define mp make_pair
#define lng long long
#define sqr(a) ((a)*(a))
#define pii pair<int,int>
#define pll pair<lng,lng>
#define pss pair<string,string>
#define pdd pair<double,double>
#define X first
#define Y second
#define pi 3.14159265359
#define ff(i,xi,n) for(int i=xi;i<=(int)(n);++i)
#define ffd(i,xi,n) for(int i=xi;i>=(int)(n);--i)
#define ffl(i,r) for(int i=head[r];i!=-1;i=edge[i].next)
#define ffe(i,r) for(_edge *i=head[r];i;i=i->next)
#define cc(i,j) memset(i,j,sizeof(i))
#define two(x)          ((lng)1<<(x))
#define lson l , mid , rt << 1
#define rson mid + 1 , r , rt << 1 | 1
#define mod  9901
#define pmod(x,y) (x%y+y)%y
using namespace std;
typedef vector<int>  vi;
typedef vector<string>  vs;
template<class T> inline void checkmax(T &x,T y)
{
    if(x<y) x=y;
}
template<class T> inline void checkmin(T &x,T y)
{
    if(x>y) x=y;
}
template<class T> inline T Min(T x,T y)
{
    return (x>y?y:x);
}
template<class T> inline T Max(T x,T y)
{
    return (x<y?y:x);
}
template<class T> T Abs(T a)
{
    return a>0?a:(-a);
}
template<class T> inline T lowbit(T n)
{
    return (n^(n-1))&n;
}
template<class T> inline int countbit(T n)
{
    return (n==0)?0:(1+countbit(n&(n-1)));
}
lng Pow(lng x,lng y)
{
    lng res=1;
    if(x==-1) return 0;
    while(y)
    {
        if(y&1)
        res=(res*x)%mod;
        x=sqr(x)%mod;
        y/=2;
    }
    return res;
}
void   f(lng a,lng b,lng &x,lng &y)
{
    if(b==0) 
    {
        x=1,y=0;
        return ;
    }
    f(b,a%b,x,y);
    lng t;
    t=x;
    x=y;
    y=t-a/b*y;

}
lng a,b;
lng A,B;
lng p[2000],num[2000];
int main()
{
    while(scanf("%I64d%I64d",&A,&B)==2)
    {
        lng res=1;
        int y=0;
        if(A==0)
        {
            printf("0\n");
            continue;
        }
        for(lng i=2;i*i<=A;++i)
        {
            if(A%i==0)
            {
                p[++y]=i;
                num[y]=0;
                while(A%i==0)
                A/=i,num[y]++;
            }
        }
        if(A>1) p[++y]=A,num[y]=1;
        for(lng i=1;i<=y;++i)
        {
            a=p[i],b=B*num[i];
                if((a-1)%mod==0)
                {
                    res=res*(b+1)%mod;
                    continue;
                }
                lng t,o;
                f(a-1,mod,t,o);
                t=pmod(t,mod);
        res=(res*(Pow(a,b+1)-1))%mod*t%mod;
//          res=(res*(Pow(a,b+1)-1))%mod*(Pow(a-1,mod-2))%mod;  pow way
        }
        if(res<0) res+=mod;
        printf("%I64d\n",res);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值