Pólya Enumeration Theorem(I)

Pólya Enumeration Theorem

Introduction

In high school combinatorics, we often encounter problems that require us to count the distinct colorings of an object with certain symmetrical properties, for example, a magiccube. How do we solve the problem?

The Burnside’s lemma might help us with this challenge. Consider all the possible transformations that the cube can undergo, for example, rotate it along the axis of two opposite faces by 9 0 ∘ 90^\circ 90, and the cube is of course considered equivalent to the original cube after these transformations. For each of these “transformations”, we count the number of colorings such that the cube still looks identical after the transformation when we view it from the same angle, and the average of these values, according to the Burnside’s lemma, turns out to be the number of distinct colourings of the cube.

Preliminary knowledge

Permutation Group

To understand Burnside’s lemma more thoroughly, we need some concepts from group theory to frame the problem more formally.

The “transformations” that we just mentioned are more formally known as permutations, which can be seen as a bijection from a finite set to itself. Consider the following necklace with 6 beads
a 1 − a 2 − a 3          a 6 − a 1 − a 2 ∣                    ∣ = > ∣                    ∣ a 6 − a 5 − a 4          a 5 − a 4 − a 3 \begin{aligned} a_1-a_2-a_3&\space\space\space\space\space\space\space\space a_6-a_1-a_2\\ |\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space|&=>|\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space|\\ a_6-a_5-a_4&\space\space\space\space\space\space\space\space a_5-a_4-a_3 \end{aligned} a1a2a3                  a6a5a4        a6a1a2=>                          a5a4a3
Here we rotate the necklace clockwisely by 1 beads, and we can describe this permutation p as
f p = ( a 1 , a 2 , … , a 6   a 6 , a 1 , … , a 5 ) f_p=\begin{pmatrix}a_1,a_2,\dots,a_6\\\ a_6,a_1,\dots,a_5 \end{pmatrix} fp=(a1,a2,,a6 a6,a1,,a5)
We define the multiplication of two permutations as carrying out the two permutations on the set in a consecutive manner. More formally, if we have two permutations p1 and p2 acting on set S = { a 1 , a 2 , … , a n } S=\lbrace a_1,a_2,\dots,an\rbrace S={a1,a2,,an}, where
f p 1 = ( a 1 , a 2 , … , a n   a p 1 ( 1 ) , a p 1 ( 2 ) , … , a p 1 ( n ) ) , f p 2 = ( a p 1 ( 1 ) , a p 1 ( 2 ) , … , a p 1 ( n )   a p 2 ( 1 ) , a p 2 ( 2 ) , … , a p 2 ( n ) ) t h e n   f p 1 ∘ f p 2 = ( a 1 , a 2 , … , a n   a p 2 ( 1 ) , a p 2 ( 2 ) , … , a p 2 ( n ) ) f_{p_1}=\begin{pmatrix}a_1,a_2,\dots,a_n\\\ a_{p_1(1)},a_{p_1(2)},\dots,a_{p_1(n)} \end{pmatrix}, f_{p_2}=\begin{pmatrix}a_{p_1(1)},a_{p_1(2)},\dots,a_{p_1(n)}\\\ a_{p_2(1)},a_{p_2(2)},\dots,a_{p_2(n)} \end{pmatrix}\\ then\space f_{p_1}\circ f_{p_2}=\begin{pmatrix}a_1,a_2,\dots,a_n\\\ a_{p_2(1)},a_{p_2(2)},\dots,a_{p_2(n)} \end{pmatrix} fp1=(a1,a2,,an ap1(1),ap1(2),,ap1(n)),fp2=(ap1(1),ap1(2),,ap1(n) ap2(1),ap2(2),,ap2(n))then fp1fp2=(a1,a2,,an ap2(1),ap2(2),,ap2(n))
This multiplication is associative: no matter in what order you rotate the necklace by 1 beads, 2 beads and 3 beads clockwisely, it is always equivalent to rotating the necklace by 6 beads clockwisely.

The multiplication is closed: since every permutation represents a bijection between a set and itself, it always map back to itself no matter how many times we perform the permutations.

There is an identity element, namely the permutation f I = ( a 1 , a 2 , … , a n   a 1 , a 2 , … , a n ) f_I=\begin{pmatrix}a_1,a_2,\dots,a_n\\\ a_1,a_2,\dots,a_n \end{pmatrix} fI=(a1,a2,,an a1,a2,,an)
such that for any permutation p p p, p ∘ I = I ∘ p = p p\circ I=I\circ p=p pI=Ip=p.

There is an inverse of each permutation: we simply swap the 2 rows.

Thus, these permutations form a group, known as the permutation group.

Fixed Points

For each of these permutations,the colorings that the cube still looks identical after the transformation when we view it from the same angle are known as Fixed Points, since they are essentially the elements that map back to themselves if we consider the permutation group as a group of functions.

Again, let us go back to the example of the necklace consists of 6 beads. Suppose there are 2 beads of type x , y , a n d   z x,y,and\space z x,y,and z each. Consider the permutation represented by rotating the necklace 3 bead clockwisely, how many diffent ways can we arrange the beads such that the ordered set { a 1 , a 2 , … , a 6 } \lbrace a_1,a_2,\dots,a_6\rbrace {a1,a2,,a6} map back to itself after the permutation?

Apparently, we have a 1 = a 4 , a 2 = a 5 , a 3 = a 6 a_1=a_4,a_2=a_5,a_3=a_6 a1=a4,a2=a5,a3=a6 in this case, which means that { a 1 , a 4 } \lbrace a_1,a_4\rbrace {a1,a4}, { a 2 , a 5 } \lbrace a_2,a_5\rbrace {a2,a5}, { a 3 , a 6 } \lbrace a_3,a_6\rbrace {a3,a6} are of the same type respectively, thus there are 3!=6 fixed points, since we can assign the type to the 3 pairs arbitrarily.

Lagrange’s Theorem in Group Theory

Lagrange’s theorem in group theory states that for any finite group G G G, the order (number of elements) of every subgroup of G G G divides the order of G G G.

Firstly, for any group G G G of order n n n, we have 2 trivial subgroups: itself and the group that only contains the identity element, and they clearly do satisfy the statement since n ∣ n n|n nn and 1 ∣ n 1|n 1n.

Now, suppose we have a non-trivial subgroup H H H of G G G, we choose an element g 1 ∈ G g_1\in G g1G and g 1 ∉ H g_1\notin H g1/H. Consider the set generated by multipying each element of H H H by g 1 g_1 g1(with g 1 g_1 g1 being the left factor). Such sets are more formally known as the left cosets of H H H in G G G. We have a similar definition for right cosets as well. Note that H H H is both a left coset and a right coset of itself in G G G.

We claim that H H H and g 1 H g_1H g1H has no common element. Suppose there is a common element H j H_j Hj, then we have:
g 1 ∗ H i = H j   f o r   s o m e   H i ∈ H g 1 ∗ H i ∗ ( H i ) − 1 = H j ∗ ( H i ) − 1 g 1 ∗ I = H k   f o r   s o m e   H k ∈ H g 1 = H k   f o r   s o m e   H k ∈ H \begin{aligned} g_1*H_i&=H_j\space for\space some\space H_i\in H\\ g_1*H_i*(H_i)^{-1}&=H_j*(H_i)^{-1}\\ g_1*I&=H_k\space for\space some\space H_k\in H\\ g_1&=H_k\space for\space some\space H_k\in H\\ \end{aligned} g1Hig1Hi(Hi)1g1Ig1=Hj for some HiH=Hj(Hi)1=Hk for some HkH=Hk for some HkH
The third line follows since H H H is a subgroup(so it is closed), and this proves contradictory since we have chosen g 1 ∉ H g_1\notin H g1/H.

We can also show that the set g 1 H g_1H g1H has ∣ H ∣ |H| H elements by contradiction. Suppose there are 2 distinct elements H i , H j ∈ H H_i,H_j\in H Hi,HjH and g 1 ∗ H i = g 1 ∗ H j g_1*H_i=g_1*H_j g1Hi=g1Hj.
( g 1 ) − 1 ∗ g 1 ∗ H i = ( g 1 ) − 1 ∗ g 1 ∗ H j I ∗ H i = I ∗ H j H i = H j \begin{aligned} (g_1)^{-1}*g_1*H_i&=(g_1)^{-1}*g_1*H_j\\ I*H_i&=I*H_j\\ H_i&=H_j \end{aligned} (g1)1g1HiIHiHi=(g1)1g1Hj=IHj=Hj
This again proves contradictory. Thus, the order of the left coset g 1 H g_1H g1H is equal to the order of the subgroup H H H.

We can then choose an element g 2 ∈ G g_2\in G g2G and g 2 ∉ H ∪ g 1 H g_2\notin H\cup g_1H g2/Hg1H, and by a similar argument, we can prove that g 2 H g_2H g2H has no common element with H H H or g 1 H g_1H g1H and is of order ∣ H ∣ |H| H. Repeat this process until we cannot find an element that lies outside of all these subsets, and we would have partitioned the group H H H into an arbitrary number of sets of order ∣ H ∣ |H| H. This concludes the proof for Lagrange Theorem.

We will continue onto the proof for the Orbit-Stabilizer Theorem and how it leads to Burnside’s lemma and consequently Pólya Enumeration Theorem in the second half.

Link to Part II

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值