详解二分查找(常规及旋转)

二分查找算法框架

int binarySearch(int[] nums, int target) {
    int left = 0, right = ...;

    while(...) {
        int mid = (right + left) >> 1;
        if (nums[mid] == target) {
            ...
        } else if (nums[mid] < target) {
            left = ...
        } else if (nums[mid] > target) {
            right = ...
        }
    }
    return ...;
}

分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。
其中…标记的部分,就是可能出现细节问题的地方

注意: 计算 mid 时需要技巧防止溢出,建议写成: mid = left + (right - left) / 2
而不是 int mid = (left + right) / 2;

基本的二分查找

搜索一个数,如果存在,返回其索引,否则返回 -1。

int binarySearch(int[] nums, int target) {
    int left = 0; 
    int right = nums.length - 1; // 注意

    while(left <= right) { // 注意
        int mid =  left + ((right - left) >> 1);
        if(nums[mid] == target)
            return mid; 
        else if (nums[mid] < target)
            left = mid + 1; // 注意
        else if (nums[mid] > target)
            right = mid - 1; // 注意
        }
    return -1;
}

1. 为什么 while 循环的条件中是 <=,而不是 < ?
因为初始化 right 的赋值是 nums.length - 1,即最后一个元素的索引,而不是 nums.length。
前者相当于两端都闭区间 [left, right],后者相当于左闭右开区间 [left, right),因为索引大小为 nums.length 是越界的

while(left <= right)的终止条件是 left == right + 1,写成区间的形式就是 [right + 1, right]
例:代入数字 [3, 2],此时搜索区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。

while(left < right)的终止条件是 left == right,写成区间的形式就是 [right, right]
例:代入数字 [2, 2],此时搜索区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就可能出现错误

非要用 while(left < right) 也可以

while(left < right) {
    // ...
}
return nums[left] == target ? left : -1;

2. 为什么 left = mid + 1,right = mid - 1?有的代码是 right = mid 或者 left = mid,没有这些加加减减,到底怎么回事,怎么判断?
本算法的搜索区间是两端封闭的,即 [left, right]。那么当我们发现索引 mid 不是要找的 target 时,如何确定下一步的搜索区间呢?
当然是搜索 [left, mid - 1] 或者 [mid + 1, right] ,因为 mid 已经搜索过,应该从搜索区间中去除。
3. 此算法有什么缺陷?
假如给定有序数组 nums = [1,2,2,2,3],target = 2,此算法返回的索引是 2 没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。

寻找左侧边界的二分搜索

int left_bound(int[] nums, int target) {
    if (nums.length == 0) {
		return -1;
	}  
    int left = 0;
    int right = nums.length; // 注意

    while (left < right) { // 注意
        int mid =  left + ((right - left) >> 1);
        if (nums[mid] == target) {
            right = mid;
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid; // 注意
        }
    }
    return left;
}

1. 此处使用 while(left < right) 而不是 <= 有没有问题?
right = nums.length 而不是 nums.length - 1 。因此每次循环的「搜索区间」是 [left, right) 左闭右开。
while(left < right) 终止的条件是 left == right,此时搜索区间 [left, left) 恰巧为空,所以可以正确终止。

2. 为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?
给定数组 nums = [1,2,2,4],target = 2
对于这个数组,代入算法返回值为 1。这个 1 的含义:nums 中小于 2 的元素有 1 个。

给定数组 nums = [2,3,5,7], target = 1
对于这个数组,代入算法返回值为 0。含义是:nums 中小于 1 的元素有 0 个。
如果 target = 8,算法会返回 4,含义是:nums 中小于 8 的元素有 4 个。

综上可以看出,函数的返回值(即 left 变量的值)取值区间是闭区间 [0, nums.length]
因此改变代码为:

int left_bound(int[] nums, int target) {
    if (nums.length == 0) return -1;
    int left = 0;
    int right = nums.length; // 注意

    while (left < right) { // 注意
        int mid =  left + ((right - left) >> 1);
        if (nums[mid] == target) {
            right = mid;
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid; // 注意
        }
    }
    // target 比所有数都大
	if (left == nums.length) {
		return -1;
	}
	// 类似之前算法的处理方式
	return nums[left] == target ? left : -1;
}

3. 为什么 left = mid + 1,right = mid ?和之前的算法不一样?
因为此时的「搜索区间」是 [left, right) 左闭右开,所以当 nums[mid] 被检测之后,下一步的搜索区间应该去掉 mid 分割成两个区间,即 [left, mid) 或 [mid + 1, right)。

4. 为什么该算法能够搜索左侧边界?
关键在于对于 nums[mid] == target 这种情况的处理:

  if (nums[mid] == target) {
	  right = mid;
  }       

也可以变相理解为该算法的返回值是小于target目标值的个数,此个数其实就是位于最左侧target的位置。
5. 为什么返回 left 而不是 right?
答:返回left和right都是一样的,因为 while 终止的条件是 left == right。

寻找右侧边界的二分搜索

int right_bound(int[] nums, int target) {
    if (nums.length == 0) return -1;
    int left = 0, right = nums.length;

    while (left < right) {
        int mid =  left + ((right - left) >> 1);
        if (nums[mid] == target) {
            left = mid + 1; // 注意
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid;
        }
    }
    if (left == 0) return -1;
	return nums[left-1] == target ? (left-1) : -1;

1. 为什么这个算法能够找到右侧边界?
关键在于对于 nums[mid] == target 这种情况的处理:

  if (nums[mid] == target) {
        left = mid + 1;
  }

参考左侧边界的算法
给定数组 nums = [1,2,2,4],target = 2
对于这个数组,代入算法返回值为 1。这个 1 的含义:nums 中大于 2 的元素有 1 个。

变相理解为该算法的返回值是大于target目标值的个数,此个数其实就是位于最右侧target的位置。

2. 为什么最后返回 left - 1 而不像左侧边界的函数,返回 left?

为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断:

 if (nums[mid] == target) {
        left = mid + 1;
        // 这样想,变形为: mid = left - 1

因为我们对 left 的更新必须是 left = mid + 1,就是说 while 循环结束时,nums[left] 一定不等于 target 了,而 nums[left - 1] 可能是target。

旋转数组(无重复元素)中的二分查找

常规有序数组 nums = [2,5,7,9,12,14,20,26,30]
旋转有序数组 nums1 = [12,14,20,26,30,2,5,7,9]
在nums1数组中,元素 2 所在的位置称之为 旋转点

在实际应用中,我们并不知道给定数组的旋转点在哪,那么我们如何解决这个问题呢?

以数组 nums = [2,5,7,9,12,14,20,26,30] 为例
在这里插入图片描述
这时候比较中间数mid与目标数target之间的大小关系,会出现三种情况
1:mid > target,则搜索区间会缩小到[left,mid-1]
2:mid < target,则搜索区间会缩小到[mid+1,right]
3:mid = target,则查找成功

以数组 nums1 = [12,14,20,26,30,2,5,7,9] 为例
在这里插入图片描述
旋转点:可以理解成旋转数组中最小的元素

情况A: 旋转点在中间数mid右侧

  • 中间数以及它左侧的元素值,全部为升序
  • 最左侧元素,必定小于中间数

此时引入目标数target,会出现两种情况
1:target在mid左侧,则 left <= target < mid
2:target在mid右侧,则判断条件为 ! (left <= target < mid)

情况B: 旋转点在中间数mid左侧,或者与中间数mid重合

  • 中间数以及它右侧的元素值,全部为升序
  • 最左侧元素,必定大于中间数

此时引入目标数target,会出现两种情况
1:target在mid右侧,则 mid < target <= right
2:target在mid右侧,则判断条件为 ! (mid < target <= right)

情况C: mid = target

在这里插入图片描述
代码实现:

int binarySearch(int[] nums, int target) {
	if (nums.length == 0) return -1;
    int left = 0, right = nums.length - 1;
    while(left <= right) { // 注意
       int mid =  left + ((right - left) >> 1);
       if(nums[mid] == target) {
       		return mid; 
       }
       // 情况A:旋转点在中间数mid右侧
       if(nums[mid] >= nums[left]){
       		// 最左侧元素 <= 目标数< 中间数
			if(nums[left] <= target && target < nums[mid]){
				right = mid - 1;
			} else {
				left = mid + 1;
			}
       } else { // 情况B:旋转点在中间数mid左侧或与mid重合
       		// 中间数mid  <  target  <=  最右侧元素
       		if(nums[mid] < target && target <= nums[right]){
       			left = mid + 1;
       		} else {
       			right = mid - 1;
       		}
       }
    }
    return -1;
}

旋转数组(有重复元素)中的二分查找

int binarySearch(int[] nums, int target) {
	if (nums.length == 0) return -1;
    int left = 0, right = nums.length - 1;
    while(left <= right) { // 注意
       int mid =  left + ((right - left) >> 1);
       if(nums[mid] == target) {
       		return mid; 
       }
       // 情况A:旋转点在中间数mid右侧
       if(nums[mid] > nums[left]){
       		// 最左侧元素 <= 目标数< 中间数
			if(nums[left] <= target && target < nums[mid]){
				right = mid - 1;
			} else {
				left = mid + 1;
			}
       } else if(nums[mid] < nums[left]){ // 情况B:旋转点在中间数mid左侧
       		// 中间数mid  <  target  <=  最右侧元素
       		if(nums[mid] < target && target <= nums[right]){
       			left = mid + 1;
       		} else {
       			right = mid - 1;
       		}
       } else { // 相等情况
       		left = mid + 1;
       }
    }
    return -1;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值