《机器学习》第七章——贝叶斯分类

1.贝叶斯决策论

贝叶斯决策论 是概率框架下实施的基本方法。对分类任务来说,在所有相关概率都已知的理想情形下,贝叶斯决策论 考虑如何基于这些概率和误判损失来选择最优的类别标记。

P(A | B)表示在 B 已经发生的情况下 A 发生的概率有多高;

P( B | A )与P( A | B ) 有什么关系呢

又 P( A ^ B) = P( B ^ A )则

so 贝叶斯公式

例如:

当已知 x1,x2,x3 的组合时,求 y=1 和 y=0 的概率;

分母可不考虑

马可夫假设 计算 P(x1 x2 x3 | y)可约等于

2.极大似然估计

3.朴素贝叶斯分类器

4.半朴素贝叶斯分类器

5.贝叶斯网

6.EM算法

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值