1.贝叶斯决策论
贝叶斯决策论 是概率框架下实施的基本方法。对分类任务来说,在所有相关概率都已知的理想情形下,贝叶斯决策论 考虑如何基于这些概率和误判损失来选择最优的类别标记。
P(A | B)表示在 B 已经发生的情况下 A 发生的概率有多高;
P( B | A )与P( A | B ) 有什么关系呢
又 P( A ^ B) = P( B ^ A )则
so 贝叶斯公式
例如:
当已知 x1,x2,x3 的组合时,求 y=1 和 y=0 的概率;
分母可不考虑
马可夫假设 计算 P(x1 x2 x3 | y)可约等于
2.极大似然估计
3.朴素贝叶斯分类器
4.半朴素贝叶斯分类器
5.贝叶斯网
6.EM算法