Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
answer:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int result = 0;
if(obstacleGrid.size() == 0) return result;
int m = obstacleGrid.size(),n = obstacleGrid[0].size();
cout << m << endl;
cout << n << endl;
if(obstacleGrid[0][0] == 1) return 0;
else obstacleGrid[0][0] = 1;
bool flag = false;
int i = 1;
for(i = 1; i < n; i ++){
if(obstacleGrid[0][i] != 1)
obstacleGrid[0][i] = 1;
else{
flag = true;
break;
}
}
if(flag){
while(i < n){
obstacleGrid[0][i] = 0;
i ++;
}
}
flag = false;
for(i = 1; i < m; i ++){
if(obstacleGrid[i][0] != 1)
obstacleGrid[i][0] = 1;
else{
flag = true;
break;
}
}
if(flag){
while(i < m){
obstacleGrid[i][0] = 0;
i ++;
}
}
for(int i = 1; i < m; i ++){
for(int j = 1; j < n; j ++){
int temp = obstacleGrid[i][j - 1] + obstacleGrid[i - 1][j];
if(obstacleGrid[i][j] == 1) obstacleGrid[i][j] = 0;
else obstacleGrid[i][j] = temp;
}
}
return obstacleGrid[m - 1][n - 1];
}
};