LeetCode 63. Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

answer:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int result = 0;
        if(obstacleGrid.size() == 0) return result;
        int m = obstacleGrid.size(),n = obstacleGrid[0].size();
        cout << m << endl;
        cout << n << endl;
        if(obstacleGrid[0][0] == 1) return 0;
        else obstacleGrid[0][0] = 1;
        bool flag = false;
        int i = 1;
        for(i = 1; i < n; i ++){
            if(obstacleGrid[0][i] != 1)
                obstacleGrid[0][i] = 1;
            else{
                flag = true;
                break;
            }
        }
        
        if(flag){
            while(i < n){
                obstacleGrid[0][i] = 0;
                i ++;
            } 
        }
        flag = false;
        for(i = 1; i < m; i ++){
            if(obstacleGrid[i][0] != 1)
                obstacleGrid[i][0] = 1;
            else{
                flag = true;
                break;
            }
        }
        if(flag){
            while(i < m){
                obstacleGrid[i][0] = 0;
                i ++;
            } 
        }
        for(int i = 1; i < m; i ++){
            for(int j = 1; j < n; j ++){
                int temp = obstacleGrid[i][j - 1] + obstacleGrid[i - 1][j];
                if(obstacleGrid[i][j] == 1) obstacleGrid[i][j] = 0;
                else obstacleGrid[i][j] = temp;
            }
        }
        return obstacleGrid[m - 1][n - 1];
    }
};


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值