300. 最长递增子序列
题目链接: 300. 最长递增子序列 - 力扣(LeetCode)
思路
- dp[i]表示包含nums[i]的最长递增子序列的长度,时间复杂度: O(n^2)
- 题目要求优化时间复杂度为O(nlogn),该怎么做?
动态规划
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp = [1]*len(nums)
for i in range(1,len(nums)):
for j in range(i):
if nums[i]>nums[j]:
dp[i] = max(dp[i],dp[j]+1)
return max(dp)
674. 最长连续递增序列
题目链接: 674. 最长连续递增序列 - 力扣(LeetCode)
动态规划
class Solution:
def findLengthOfLCIS(self, nums: List[int]) -> int:
dp = [1]*len(nums)
for i in range(1,len(nums)):
if nums[i]>nums[i-1]:
dp[i] = dp[i-1]+1
return max(dp)
718. 最长重复子数组
题目链接: 718. 最长重复子数组 - 力扣(LeetCode)
思路
- dp[i][j]表示包含nums1[j-1]和nums2[i-1]的两个子数组最大公共后缀子数组长度。
- 状态转移方程:nums1[j-1] != nums2[i-1],dp[i][j]为0;nums1[j-1] == nums2[i-1],dp[i][j]=dp[i-1][j-1]+1。用res记录最长值
动态规划
class Solution:
def findLength(self, nums1: List[int], nums2: List[int]) -> int:
dp = [[0]*(len(nums1)+1) for _ in range(len(nums2)+1)]
res = 0
for i in range(1,len(nums2)+1):
for j in range(1,len(nums1)+1):
if nums2[i-1] == nums1[j-1]:
dp[i][j] = dp[i-1][j-1]+1
res = max(res,dp[i][j])
return res
610

被折叠的 条评论
为什么被折叠?



