动态规划 | 300. 最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组

300. 最长递增子序列

题目链接: 300. 最长递增子序列 - 力扣(LeetCode)

思路

  1. dp[i]表示包含nums[i]的最长递增子序列的长度,时间复杂度: O(n^2)
  2. 题目要求优化时间复杂度为O(nlogn),该怎么做?

动态规划

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        dp = [1]*len(nums)
        for i in range(1,len(nums)):
            for j in range(i):
                if nums[i]>nums[j]:
                    dp[i] = max(dp[i],dp[j]+1)
        return max(dp)

674. 最长连续递增序列

题目链接: 674. 最长连续递增序列 - 力扣(LeetCode)

动态规划

class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        dp = [1]*len(nums)
        for i in range(1,len(nums)):
            if nums[i]>nums[i-1]:
                dp[i] = dp[i-1]+1
        return max(dp)

718. 最长重复子数组

题目链接: 718. 最长重复子数组 - 力扣(LeetCode)

思路

  1. dp[i][j]表示包含nums1[j-1]和nums2[i-1]的两个子数组最大公共后缀子数组长度。
  2. 状态转移方程:nums1[j-1] != nums2[i-1],dp[i][j]为0;nums1[j-1] == nums2[i-1],dp[i][j]=dp[i-1][j-1]+1。用res记录最长值

动态规划

class Solution:
    def findLength(self, nums1: List[int], nums2: List[int]) -> int:
        dp = [[0]*(len(nums1)+1) for _ in range(len(nums2)+1)]
        res = 0
        for i in range(1,len(nums2)+1):
            for j in range(1,len(nums1)+1):
                if nums2[i-1] == nums1[j-1]:
                    dp[i][j] = dp[i-1][j-1]+1
                    res = max(res,dp[i][j])
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值