Lcyztf
码龄8年
关注
提问 私信
  • 博客:16,272
    16,272
    总访问量
  • 11
    原创
  • 2,147,987
    排名
  • 7
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:日本
  • 加入CSDN时间: 2017-03-04
博客简介:

Lcyztf的博客

查看详细资料
个人成就
  • 获得5次点赞
  • 内容获得3次评论
  • 获得8次收藏
创作历程
  • 13篇
    2018年
成就勋章
TA的专栏
  • ML
    3篇
  • Dialogue Systems
    9篇
  • CNN
  • Evaluation Metric
    1篇
  • NLP Data Sets
    1篇
  • Representation
    2篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflowpytorchnlp
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

367人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

论文阅读:Extending Neural Generative Conversational Model using External Knowledge Sources

题目很大很好,方法非常简单粗暴,感觉挺水的……这里就总结一下一些值得思考的地方。关于incorporate external knowledge的系列工作主要集中于task-oriented任务中,主要分为structured KB 和unstructured data两个方面。open-domain用的并不多。看这个paper本来是想看它如何从data中找knowledge的……但是方法异常...
原创
发布博客 2018.09.18 ·
639 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

系列总结:Sequence Generation via GAN

上海交大SeqGAN系列工作之一。一、SeqGAN: Sequence Generative Adversarial  Nets with Policy GradientLSTM generator + CNN discriminator + policy gradient where action-value function is estimated via Monte-Carlo s...
原创
发布博客 2018.09.16 ·
741 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

论文阅读:Neural Net Models of Open-domain Discourse Coherence——Jiwei Li

本文是Jiwei大神17年EMNLP上的paper。 
原创
发布博客 2018.09.16 ·
320 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文阅读:Best of Both Worlds: Transferring Knowledge from D to G

首先pretrain D和G,然后fix D,让G不断sample response,然后根据D的监督信号进行更新。这里使用Gumbel Softmax来解决non-differentialable problem。作者从MLE(or  equivalently CE)的generic and safe response问题入手,指出MLE训练的生成模型容易“game” MLE,会倾向于“av...
原创
发布博客 2018.09.09 ·
305 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

关于word embedding的一些思考

源于最近做生成和检索式对话系统,以及一篇well named paper:When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation? 这里总结一下最近对word embedding的思考。https://www.cnblogs.com/Determined22/p/5780305.htm...
原创
发布博客 2018.09.08 ·
1545 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Multi-source attention mechanism

一、Attention Strategies for Multi-Source Sequence-to-Sequence Learning本文主要考虑多encoder和单个RNN decoder的scenario.主要分为以下三种来讨论:1、Concatenation of the context vectorsA widely adopted technique for combin...
原创
发布博客 2018.09.06 ·
842 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文阅读:Sequence Generation by Editing Prototype

一、Response Generation by Context-aware Prototype Editing是一个retrieval——edit vector——conditional generating的过程,目标是解决safe response问题,让生成的回答更加informative and engaging,intuiation是比较c-c差异然后改写r。注意两点:①retri...
原创
发布博客 2018.08.31 ·
1929 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

论文阅读:Instance Weighting in Dialogue Systems

总结一下最近读到的三篇instance weighting的paper。一、Not All Dialogues are Created Equal: Instance Weighting for Neural Conversational Models ——SIGDIAL 18第一个提出做instance  weighting,值得注意的想法是,把这个weighting model看成是一...
原创
发布博客 2018.08.29 ·
909 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文阅读:Deep contextualized word representations

NAACL 18 Best Paper本文再度提醒我们,deep learning的精髓在于representation,而NLP至今没有把最根本的表示——embedding和language model做好(没有下大气力去灌)。A good low-level representation can bring significant improvement that beyond our w...
原创
发布博客 2018.08.22 ·
5797 阅读 ·
2 点赞 ·
3 评论 ·
4 收藏

论文阅读:STC data set for single-turn short text conversation——Wang 2013 Noah's Ark Lab

首先吐槽一句,不公开完整human labelled 数据集……这是一个基于Sina微博的数据集,是从一些中国搞NLP的高级知识分子的微博posts中爬下来的(posts的质量较高),但是comments(replies)是所有人都可以发的。一、data set构建的方法如下:1、 crawling the community of users首先确定10个在sina微博上...
原创
发布博客 2018.07.25 ·
1122 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文阅读:RUBER: An Unsupervised Method for Automatic Evaluation of Open-Domain Dialog Systems

核心问题:What makes a good reply in open-domain dialog systems?一、Observation1、Resembling the groundtruth generally implies a good reply.生成的reply和groundtruth相似度越高越好。这是一个general assumption。我们需要注意:sh...
原创
发布博客 2018.07.22 ·
1018 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

论文:Learning Matching Models with Weak Supervision for Response Selection in Retrieval-based Chatbots

论文链接:https://arxiv.org/abs/1805.02333本文提出了一种用seq2seq给每个(context, response)pair打分,并把这个分数作为“soft” margin 用linear svm loss来进行训练的方法,有针对性地解决了当前训练检索式对话系统的matching model,在训练时sample negative responses的时候遇到的...
原创
发布博客 2018.07.17 ·
796 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

CS231n Notes Linear Classification

1. Linear Classifier在数学上是如下的式子:每个example都是一个column vector,可以把W矩阵的每行看作一个针对每个类别的classifier。针对W和b可以有(直观上)两种理解:(1)hyperplane:在high dimensional space上将data points线性分开。(2)template matching:Each r...
原创
发布博客 2018.07.17 ·
301 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏