摘要
机器学习 NLP 两手都要抓,两手都要硬
代码放在coding上了:https://coding.net/u/wenyangsama/p/Python-MachineLearning/git
优秀综合性博客
ML知识学习
最大熵 : http://blog.csdn.net/itplus/article/details/26549871
Stanford ML 笔记: http://pan.baidu.com/s/1i5pDm2D
优秀工具
Sklearn :
http://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html使用Sklearn进行回归分析:
http://blog.csdn.net/u010900574/article/details/52666291

本文分享了机器学习与自然语言处理(NLP)领域的资源与实践经验,包括最大熵模型介绍、Stanford机器学习课程笔记链接及Sklearn工具的使用案例。此外还提供了作者的综合性博客和个人知乎页面供读者进一步交流学习。

被折叠的 条评论
为什么被折叠?



