1 动态规划
动态规划的核心在于利用同一类型的任务结果进行递推。
动规具有明显套路,具体分为5步走:
1 确定dp数组(dp table)以及下标的含义
2 确定递推公式
3 dp数组如何初始化
4 确定遍历顺序
5 举例推导dp数组
2 斐波那契数
LeetCode:斐波那契数
无论是递归还是动规,这道题都是经典中的经典。
class Solution {
public:
int fib(int n) {
//0和1
if(n<=1)return n;
vector<int> dp(n+1);
dp[0]=0;
dp[1]=1;
for(int i=2;i<=n;i++)
{
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
};
3 爬楼梯
LeetCode:爬楼梯
本质上依然是斐波那契数列,这里对于0的初始化可以完全不用在意其现实意义,而是注重其对于递推的合理性。
class Solution {
public:
int climbStairs(int n) {
//dp[i]=dp[i-1]+dp[i-2]
//dp[1]=1,dp[2]=2,dp[3]=3
vector<int> dp(n+1);
dp[0]=1;
dp[1]=1;
for(int i=2;i<=n;++i)
{
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
};
4 使用最小花费爬楼梯
LeetCode:使用最小花费爬楼梯
使用最小值min进行状态转移。
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost)
{
//dp[i]=min(cost[i-1]+dp[i-1],cost[i-2]+dp[i-2])
//dp[0]=0,dp[1]=0
vector<int> dp(cost.size()+1);
dp[0]=0;
dp[1]=0;
for(int i=2;i<=cost.size();++i)
{
dp[i]=min(cost[i-1]+dp[i-1],cost[i-2]+dp[i-2]);
}
return dp[cost.size()];
}
};
5 不同路径
LeetCode:不同路径
如果使用排列组合,可以使用组合数进行选择,如果是动态规划,则是对第一行和第一列初始化后,直接dp[i][j]=dp[i-1][j]+dp[i][j-1]。
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp( m, vector<int>(n,1));
//第一行和第一列全部都应该初始化为1
//因为没法回头,只能一直右或一直左完成
//对于第二列和第二行开始,dp[i][j]=dp[i-1][j]+dp[i][j-1]
for(int i=1;i<m;++i)
{
for(int j=1;j<n;++j)
{
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
6 不同路径II
LeetCode:不同路径II
对第一行和第一列的初始化与上一题有所不同,一旦遇到障碍物,其与其后续的位置都置零。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = (obstacleGrid[0]).size();
vector<vector<int>> dp(m,vector(n,1));
int i,j;
bool jam=false;
//初始化第一列
for(i=0;i<m;i++)
{
if(jam==true)
dp[i][0]=0;
if(jam==false && obstacleGrid[i][0]!=1)
dp[i][0]=1;
if(jam==false && obstacleGrid[i][0]==1)
{
dp[i][0]=0;
jam=true;
}
}
//初始化第一行
jam=false;
for(i=0;i<n;i++)
{
if(jam==true)
dp[0][i]=0;
if(jam==false && obstacleGrid[0][i]!=1)
dp[0][i]=1;
if(jam==false && obstacleGrid[0][i]==1)
{
dp[0][i]=0;
jam=true;
}
}
//动态规划
for(int i=1;i<m;i++)
{
for(int j=1;j<n;j++)
{
if(obstacleGrid[i][j]!=1)
dp[i][j]=dp[i-1][j]+dp[i][j-1];
else
dp[i][j]=0;
}
}
return dp[m-1][n-1];
}
};
7 整数拆分
LeetCode:整数拆分
拆分问题摆明了是动态规划,唯一需要注意的是,对于当前小的拆分法方案还有[自身]一种方法。
class Solution {
public:
int integerBreak(int n) {
//dp[n]为n的最大成绩
vector<int> dp(n+1,0);
//初始化
dp[1]=1;
dp[2]=1;
//记录最大乘积
int max_val,i,j;
for(i=3;i<=n;i++)
{
max_val=0;
for(j=1;j<i;j++)
{
//状态转移方程,拆成n=n-k+k,其乘积为k*(n-k)
//其中n-k的结果为max(n-k,dp[n-k])
max_val=max(max_val, (i-j) * (max(j,dp[j])));
}
dp[i]=max_val;
}
return dp[n];
}
};
8 不同的二叉搜索树
LeetCode:不同的二叉搜索树
二叉搜索树的左右子树也是二叉搜索树,因此可以利用左右子树的节点个数进行状态转移方程。
class Solution {
public:
int numTrees(int n) {
//根据左右两边各有多少个节点进行归类
//因为二叉搜索树的左右子树也是二叉搜索树,所以可以递归
vector<int> dp(n+1,0);
dp[0]=1;
dp[1]=1;
for(int i=2;i<=n;i++)
{
for(int j=0;j<i;j++)
{
//左边j个,右边i-1-j个,根节点1个
dp[i]+=dp[j]*dp[i-1-j];
}
}
return dp[n];
}
};
9 总结
开始动态规划喽,第一天的题目还是比较简单的,新学期开始老师也开始布置作业了,烦死了。
——2023.3.1