Mapreduce及原理简介
Mapreduce可以大幅提高处理大规模文件(1TB)的效率,是一种高效的并行编程模型。
1.处理流程
Mapreduce一共有几个过程:Input、split、Map、shuffle、reduce、finalize。
打个比方:
你是一个餐厅的厨师,你要先从物流采购人员(input 数据输入)那里获得自己需要的蔬菜水果(split 将数据切割)、然后把它们切碎(Map 处理数据),然后呢素材就准备好了,需要冷冻一下存储,放到冰箱里(shuffle 保存数据),等你需要用的时候就拿出来根据需求做出菜(reduce),最终给顾客吃(finalize)。
具体流程如下:
首先用户将应用程序部署到多台主机上,分为master和worker。master的作用类似于管家,负责分配任务(map、reduce)给工人(worker)。
部署完毕后,客户端输入数据(input)给MapReduce,首先进行spilit将数据分片, 然后进行map函数处理,将处理后的数据保存在本地磁盘上(shuffle),等文件达到一定规模后,发送给reduce worker,最终输出文件(finalize)。
参考:
知乎 https://zhuanlan.zhihu.com/p/32172999