2020-12-09

Mapreduce及原理简介

Mapreduce可以大幅提高处理大规模文件(1TB)的效率,是一种高效的并行编程模型。
1.处理流程
Mapreduce一共有几个过程:Input、split、Map、shuffle、reduce、finalize。

打个比方:
你是一个餐厅的厨师,你要先从物流采购人员(input 数据输入)那里获得自己需要的蔬菜水果(split 将数据切割)、然后把它们切碎(Map 处理数据),然后呢素材就准备好了,需要冷冻一下存储,放到冰箱里(shuffle 保存数据),等你需要用的时候就拿出来根据需求做出菜(reduce),最终给顾客吃(finalize)。

具体流程如下:
在这里插入图片描述

首先用户将应用程序部署到多台主机上,分为master和worker。master的作用类似于管家,负责分配任务(map、reduce)给工人(worker)。
部署完毕后,客户端输入数据(input)给MapReduce,首先进行spilit将数据分片, 然后进行map函数处理,将处理后的数据保存在本地磁盘上(shuffle),等文件达到一定规模后,发送给reduce worker,最终输出文件(finalize)。

参考:
知乎 https://zhuanlan.zhihu.com/p/32172999

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值