【学习笔记】数论:扩展欧几里得

最近学了一下扩展gcd,深有体会,今天来讲一讲

扩展欧几里得

上一篇博客我有提到如何求逆元,那我今天讲一讲扩展欧几里得。
欧几里得算法是什么?就是辗转相除法,不懂的自己上网白度
那啥是扩展欧几里得呢?
首先先引入一个东西:

贝祖定理

贝祖定理
而扩展欧几里得就是证明的过程。
结合代码理解一下:

ll exgcd(ll a,ll b,ll &x,ll &y){//上面讲得很清楚了
	if (b==0){
		x=1;y=0;
		return a;
	}
	ll d=gcd(b,a%b,x,y);
	ll t=x;x=y;y=t-y*(a/b);
	return d;
}
//主程序中
gcd(a,b,x0,y0);

是不是挺简单呢?
给一道例题:

同余方程(NOIP2012)

关于x的同余方程a*x≡1 (mod b)的最小正整数解,输入数据保证有解。
2 ≤ a , b ≤ 2 , 000 , 000 , 000 2 ≤a, b≤ 2,000,000,000 2a,b2,000,000,000
根据贝祖定理及其证明过程可得:当此同余方程有解,需要满足 g c d ( a , b ) ∣ 1 gcd(a,b)|1 gcd(a,b)1
这个方程又可以写为: a ⋅ x + b ⋅ y = 1 a·x+b·y=1 ax+by=1 ,其中 y y y 为负数(即b的y倍)
那么说,这就有了一个扩展欧几里得的模板,然后求得 x 0 , y 0 x0,y0 x0y0 即可, x 0 x0 x0 就是原方程的一个解。
那我们怎么求最小正整数解
其实很简单,我们通过取模操作把它移动到1~b之间,就可以得到最小的正整数解了。
代码如下:

#include<cstdio>
#define ll long long
using namespace std;
ll a,b,x0,y0;
ll gcd(ll a,ll b,ll &x,ll &y){
	if (b==0){
		x=1;y=0;
		return a;
	}
	ll d=gcd(b,a%b,x,y);
	ll t=x;x=y;y=t-y*(a/b);
	return d;
}
int main(){
	scanf("%lld%lld",&a,&b);
	gcd(a,b,x0,y0);
	printf("%lld",(x0%b+b)%b);//感性理解
	return 0;
}

总结

今天就讲完了扩欧,如果大家发现什么问题,欢迎指出!
对于上一章求逆元,大家可以去参考一下!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值