最近学了一下扩展gcd,深有体会,今天来讲一讲
扩展欧几里得
上一篇博客我有提到如何求逆元,那我今天讲一讲扩展欧几里得。
欧几里得算法是什么?就是辗转相除法,不懂的自己上网白度
那啥是扩展欧几里得呢?
首先先引入一个东西:
贝祖定理
而扩展欧几里得就是证明的过程。
结合代码理解一下:
ll exgcd(ll a,ll b,ll &x,ll &y){//上面讲得很清楚了
if (b==0){
x=1;y=0;
return a;
}
ll d=gcd(b,a%b,x,y);
ll t=x;x=y;y=t-y*(a/b);
return d;
}
//主程序中
gcd(a,b,x0,y0);
是不是挺简单呢?
给一道例题:
同余方程(NOIP2012)
关于x的同余方程a*x≡1 (mod b)的最小正整数解,输入数据保证有解。
2
≤
a
,
b
≤
2
,
000
,
000
,
000
2 ≤a, b≤ 2,000,000,000
2≤a,b≤2,000,000,000
根据贝祖定理及其证明过程可得:当此同余方程有解,需要满足
g
c
d
(
a
,
b
)
∣
1
gcd(a,b)|1
gcd(a,b)∣1 。
这个方程又可以写为:
a
⋅
x
+
b
⋅
y
=
1
a·x+b·y=1
a⋅x+b⋅y=1 ,其中
y
y
y 为负数(即b的y倍)
那么说,这就有了一个扩展欧几里得的模板,然后求得
x
0
,
y
0
x0,y0
x0,y0 即可,
x
0
x0
x0 就是原方程的一个解。
那我们怎么求最小正整数解
其实很简单,我们通过取模操作把它移动到1~b之间,就可以得到最小的正整数解了。
代码如下:
#include<cstdio>
#define ll long long
using namespace std;
ll a,b,x0,y0;
ll gcd(ll a,ll b,ll &x,ll &y){
if (b==0){
x=1;y=0;
return a;
}
ll d=gcd(b,a%b,x,y);
ll t=x;x=y;y=t-y*(a/b);
return d;
}
int main(){
scanf("%lld%lld",&a,&b);
gcd(a,b,x0,y0);
printf("%lld",(x0%b+b)%b);//感性理解
return 0;
}
总结
今天就讲完了扩欧,如果大家发现什么问题,欢迎指出!
对于上一章求逆元,大家可以去参考一下!