Round #344 (Div. 2) A - Interview

A. Interview
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Blake is a CEO of a large company called "Blake Technologies". He loves his company very much and he thinks that his company should be the best. That is why every candidate needs to pass through the interview that consists of the following problem.

We define function f(x, l, r) as a bitwise OR of integers xl, xl + 1, ..., xr, where xi is the i-th element of the array x. You are given two arrays a and b of length n. You need to determine the maximum value of sum f(a, l, r) + f(b, l, r) among all possible 1 ≤ l ≤ r ≤ n.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the length of the arrays.

The second line contains n integers ai (0 ≤ ai ≤ 109).

The third line contains n integers bi (0 ≤ bi ≤ 109).

Output

Print a single integer — the maximum value of sum f(a, l, r) + f(b, l, r) among all possible 1 ≤ l ≤ r ≤ n.

Examples
input
5
1 2 4 3 2
2 3 3 12 1
output
22
input
10
13 2 7 11 8 4 9 8 5 1
5 7 18 9 2 3 0 11 8 6
output
46
Note

Bitwise OR of two non-negative integers a and b is the number c = a OR b, such that each of its digits in binary notation is 1 if and only if at least one of a or b have 1 in the corresponding position in binary notation.

In the first sample, one of the optimal answers is l = 2 and r = 4, becausef(a, 2, 4) + f(b, 2, 4) = (2 OR 4 OR 3) + (3 OR 3 OR 12) = 7 + 15 = 22. Other ways to get maximum value is to choose l = 1 andr = 4l = 1 and r = 5l = 2 and r = 4l = 2 and r = 5l = 3 and r = 4, or l = 3 and r = 5.

In the second sample, the maximum value is obtained for l = 1 and r = 9.

这道题考察的是按位或的基本概念,利用位或运算的性质,把两个数组都从头到尾扫一遍就可以了;

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n;
    scanf("%d",&n);
    int ansa=0,ansb=0;
    int temp;
    for(int i=0;i<n;++i)
    {
        scanf("%d",&temp);
        ansa=(ansa|temp);
    }
    for(int i=0;i<n;++i)
    {
        scanf("%d",&temp);
        ansb=(ansb|temp);
    }
    int ans=ansa+ansb;
    printf("%d\n",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值