这是求解最小生成树的两种主要方法之一;关于最小生成树,在我的《最小生成树 Kruskal》这篇文章中有简单的介绍;
Prim算法,和Kruskal算法都是基于一种贪心的思路;
首先,选择任意一个结点,在与这个结点关联的边中,选择权值最小的一条,把这条边的另一个端点记录下来;
从已经记录的端点中,找出以它为顶点的边中权值最小的;
不断重复这个操作,即可;
讲的不清不楚,直接看代码吧;
const int INF=0x3f3f3f3f;
int prim(int cnt)//cnt是结点的总数
{
bool v[105];//标记已经用过的结点
int d[105];//距离初始结点的距离
int ans=0;
memset(v,0,sizeof(v));
//这里选取编号为0的结点作为初始节点
for(int i=0;i<cnt;++i)
{
d[i]=dis[0][i];
}
v[0]=1;
d[0]=0;
//一共有cnt个结点,除去初始结点,还要操作cnt-1次
for(int i=0;i<cnt-1;++i)
{
int flag,zmin=INF;
for(int j=0;j<cnt;++j)
{
if(!v[j]&&d[j]<zmin)
{
flag=j;
zmin=d[j];
}
}
v[flag]=1;
ans+=zmin;
//这里要重点理解,相当于合并结点,更新初始结点到其他结点的距离
for(int j=0;j<cnt;++j)
{
if(!v[j]&&d[j]>dis[flag][j]) d[j]=dis[flag][j];
}
}
return ans;
}