欧几里得算法求m,n(非负整数)的最大公约数,记为gcd(m,n);java版

基础知识:最大公约数:自行百度;

欧几里得-最大公约数算法: 

 gcd(m,n) = gcd(n,m mod n)  (m mod n 表示:m除以n后的余数) 重复此步骤,知道 m mod n等于0;

得到gcd(m,0) 而gcd(m,0) = m (这步为什么?呃我好像也有点不太明白!如果有知道的欢迎告知)

 

举例说明:gcd(60,24) = gcd(24,12) = gcd(12,0) = 12;因此结果为12.不信的话可以请自己验证一下;

代码如下:

//
//欧几里得算法求最大公约数
//created by AaronLee_1310 on 2019 04 28
//
public class main {

	public static void main(String[] args)
	{
		//随意初始化数值
		int m = 248;
		int n = 16802768;
		int result = gcd(m,n);
		System.out.println(result);
	}
	//欧几里得求最大公约数算法.
	public static int gcd(int m,int n)
	{
		//判断m是否大于n
		if(m < n)
		{
			int temp = m;
			m = n;
			n = temp;
		}
		while(n != 0)
		{
			int r = m % n;
			m = n;
			n = r;
		}
		
		return m;
		
	}

}

其中做了一步优化判断,判断m是否大于n,否的话互换。主要的函数就是while部分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值