一个index会被分成多个shard,每个document只会存在一个shard上,由hash算法决定
shard = hash(routing) % number_of_primary_shards
通常这个routing就是document的id值。也可以自己指定。
根据name字段路由。
这也就是es 的 primary shard 的数量不可变的原因。
增删改的内部:
客户端发送请求到任意一个节点上,这个节点称为 coordinating node, 之后这个node会将请求路由到对应的primary shard 上,primary shard 执行之后同步到replica shard上,都完成之后再返回给coordinating node,然后将结果返回给客户端。
写一致性:
在写入的时候可以携带参数来确保写一致性。
one:要求我们这个写操作,只要有一个primary shard是active活跃可用的,就可以执行
all:要求我们这个写操作,必须所有的primary shard和replica shard都是活跃的,才可以执行这个写操作
quorum:默认的值,要求所有的shard中,必须是大部分(超过半数的)的shard都是活跃的,可用的,才可以执行这个写操作
在quorum所需要的要求不满足的时候,默认等待1分钟,超时就会报错,也可以携带参数timeout,,例如 /index/type/id?timeout=30 来设置超时时间。
对于读请求:
客户端发送请求到任意一个node,成为coordinate node,coordinate node对document进行路由,将请求转发到对应的node,此时会使用round-robin随机轮询算法,在primary shard以及其所有replica中随机选择一个,让读请求负载均衡,接收请求的node返回document给coordinate node,coordinate node返回document给客户端
特殊情况:document如果还在建立索引过程中,可能只有primary shard有,任何一个replica shard都没有,此时可能会导致无法读取到document,但是document完成索引建立之后,primary shard和replica shard就都有了
bulk操作:
bulk中的每个操作都可能要转发到不同的node的shard去执行
如果采用比较良好的json数组格式,es拿到那种标准格式的json串以后,要按照下述流程去进行处理
(1)将json数组解析为JSONArray对象,这个时候,整个数据,就会在内存中出现一份一模一样的拷贝,一份数据是json文本,一份数据是JSONArray对象
(2)解析json数组里的每个json,对每个请求中的document进行路由
(3)为路由到同一个shard上的多个请求,创建一个请求数组
(4)将这个请求数组序列化
(5)将序列化后的请求数组发送到对应的节点上去
但这样会耗费更多内存。
不用将其转换为json对象,不会出现内存中的相同数据的拷贝,直接按照换行符切割json,对每两个一组的json,读取meta,进行document路由,直接将对应的json发送到node上去,最大的优势在于,不需要将json数组解析为一个JSONArray对象,形成一份大数据的拷贝,浪费内存空间,尽可能地保证性能
search&timeout
took:整个搜索请求花费了多少毫秒
hits.total:本次搜索,返回了几条结果
hits.max_score:本次搜索的所有结果中,最大的相关度分数是多少,每一条document对于search的相关度,越相关,_score分数越大,排位越靠前
hits.hits:默认查询前10条数据,完整数据,_score降序排序
shards:shards fail的条件(primary和replica全部挂掉),不影响其他shard。默认情况下来说,一个搜索请求,会打到一个index的所有primary shard上去,当然了,每个primary shard都可能会有一个或多个replic shard,所以请求也可以到primary shard的其中一个replica shard上去。
timeout:默认无timeout,latency平衡completeness,手动指定timeout,timeout查询执行机制
timeout=10ms,timeout=1s,timeout=1m
GET /_search?timeout=10m
multi-index和multi-type搜索模式
/_search:所有索引,所有type下的所有数据都搜索出来
/index1/_search:指定一个index,搜索其下所有type的数据
/index1,index2/_search:同时搜索两个index下的数据
/*1,*2/_search:按照通配符去匹配多个索引
/index1/type1/_search:搜索一个index下指定的type的数据
/index1/type1,type2/_search:可以搜索一个index下多个type的数据
/index1,index2/type1,type2/_search:搜索多个index下的多个type的数据
/_all/type1,type2/_search:_all,可以代表搜索所有index下的指定type的数据
deep paging:
例如:GET /test_index/test_type/_search?from=10000&size=10,对于分页请求,coordinate node会将请求分发到其他的shard上,这个请求并不是在每个shard取10条记录返回,而是从每个shard上返回10010条数据,在coordinate node上汇聚了30030条数据,然后coordinate node进行分页查询出数据。这样太浪费coordinate node的性能,所以应该避免deep paging。
query string基础语法
GET /test_index/test_type/_search?q=test_field:test
GET /test_index/test_type/_search?q=+test_field:test
GET /test_index/test_type/_search?q=-test_field:test
第一种和第二种的结果是一样的,查询结果中必须包含字段,第三种是必须不包含的意思
query string必须以和index建立时相同的analyzer进行分词
query string对exact value和full text的区别对待
date:exact value
_all:full text
query string,默认情况下,es会使用它对应的field建立倒排索引时相同的分词器去进行分词和normalization,只有这样,才能实现正确的搜索
比如:我们建立倒排索引的时候,将dogs --> dog,结果你搜索的时候,还是一个dogs,那不就搜索不到了吗?所以搜索的时候,那个dogs也必须变成dog才行。才能搜索到
_all metadata的原理和作用:
GET /test_index/test_type/_search?q=test
直接可以搜索所有的field,任意一个field包含指定的关键字就可以搜索出来。我们在进行中搜索的时候,不是是对document中的每一个field都进行一次搜索,es中的_all元数据,在建立索引的时候,我们插入一条document,它里面包含了多个field,此时,es会自动将多个field的值,全部用字符串的方式串联起来,变成一个长的字符串,作为_all field的值,同时建立索引,后面如果在搜索的时候,没有对某个field指定搜索,就默认搜索_all field,其中是包含了所有field的值的
举个例子
{
"name": "jack",
"age": 26,
"email": "jack@sina.com",
"address": "guamgzhou"
}
"jack 26 jack@sina.com guangzhou",作为这一条document的_all field的值,同时进行分词后建立对应的倒排索引
生产环境不使用
mapping:
自动或手动为index中的type建立的一种数据结构和相关配置,简称为mapping
dynamic mapping,自动为我们建立index,创建type,以及type对应的mapping,mapping中包含了每个field对应的数据类型,以及如何分词等设置,搜索结果不一致,因为es自动建立mapping的时候,设置了不同的field不同的data type。不同的data type的分词、搜索等行为是不一样的。所以出现了_all field和field的搜索表现完全不一样。
(1)往es里面直接插入数据,es会自动建立索引,同时建立type以及对应的mapping
(2)mapping中就自动定义了每个field的数据类型
(3)不同的数据类型(比如说text和date),可能有的是exact value,有的是full text
(4)exact value,在建立倒排索引的时候,分词的时候,是将整个值一起作为一个关键词建立到倒排索引中的;full text,会经历各种各样的处理,分词,normaliztion(时态转换,同义词转换,大小写转换),才会建立到倒排索引中
(5)同时呢,exact value和full text类型的field就决定了,在一个搜索过来的时候,对exact value field或者是full text field进行搜索的行为也是不一样的,会跟建立倒排索引的行为保持一致;比如说exact value搜索的时候,就是直接按照整个值进行匹配,full text query string,也会进行分词和normalization再去倒排索引中去搜索
(6)可以用es的dynamic mapping,让其自动建立mapping,包括自动设置数据类型;也可以提前手动创建index和type的mapping,自己对各个field进行设置,包括数据类型,包括索引行为,包括分词器,等等
mapping,就是index的type的元数据,每个type都有一个自己的mapping,决定了数据类型,建立倒排索引的行为,还有进行搜索的行
1、核心的数据类型
string
byte,short,integer,long
float,double
boolean
date
2、dynamic mapping
true or false --> boolean
123 --> long
123.45 --> double
2017-01-01 --> date
"hello world" --> string/text
3、查看mapping
GET /index/_mapping/type
exact value精确匹配:
2017-01-01,exact value,搜索的时候,必须输入2017-01-01,才能搜索出来
如果你输入一个01,是搜索不出来的
full text全文搜索:
(1)缩写 vs. 全程:cn vs. china
(2)格式转化:like liked likes
(3)大小写:Tom vs tom
(4)同义词:like vs love
2017-01-01,2017 01 01,搜索2017,或者01,都可以搜索出来
china,搜索cn,也可以将china搜索出来
likes,搜索like,也可以将likes搜索出来
Tom,搜索tom,也可以将Tom搜索出来
like,搜索love,同义词,也可以将like搜索出来
就不是说单纯的只是匹配完整的一个值,而是可以对值进行拆分词语后(分词)进行匹配,也可以通过缩写、时态、大小写、同义词等进行匹配
分词器:
给你一段句子,然后将这段句子拆分成一个一个的单个的单词,同时对每个单词进行normalization(时态转换,单复数转换),分瓷器
recall,召回率:搜索的时候,增加能够搜索到的结果的数量
character filter:在一段文本进行分词之前,先进行预处理,比如说最常见的就是,过滤html标签(<span>hello<span> --> hello),& --> and(I&you --> I and you)
tokenizer:分词,hello you and me --> hello, you, and, me
token filter:lowercase,stop word,synonymom,dogs --> dog,liked --> like,Tom --> tom,a/the/an --> 干掉,mother --> mom,small --> little
内置分词器的介绍
Set the shape to semi-transparent by calling set_trans(5)
standard analyzer:set, the, shape, to, semi, transparent, by, calling, set_trans, 5(默认的是standard)
simple analyzer:set, the, shape, to, semi, transparent, by, calling, set, trans
whitespace analyzer:Set, the, shape, to, semi-transparent, by, calling, set_trans(5)
language analyzer(特定的语言的分词器,比如说,english,英语分词器):set, shape, semi, transpar, call, set_tran, 5
测试:
手动创建索引:
analyzed: 分词
not_analyzed: 不分词,,当做exact value来检索
no:不分词,也不被检索
只能创建index时手动建立mapping,或者新增field mapping,但是不能update field mapping
不能被分词