题目链接:http://codeforces.com/problemset/problem/940/F
题目大意:有n个元素,q次操作,有如下两种操作:
1、给你一个区间[L,R],要你输出该区间的Mex值;(Mex值是区间内数字出现次数中从1开始第一个未出现的数)
2、给你p和x,将a[p]的值更改成x。
样例解释:
10 4
1 2 3 1 1 2 2 2 9 9
1 1 1
1 2 8
2 7 1
1 2 8
2
3
2
对于第一次的询问操作,[1,1]区间中数字1出现了1次,所以第一个未出现的数为2
对于第二次的询问操作,[2,8]区间中数字3出现了1次,数字1出现了2次,数字2出现了4次,所以第一个未出现的数为3
对于第一个修改操作,将a[7]=1
对于第二次的询问操作,[2,8]区间中数字3出现了1次,数字1出现了3次,数字2出现了3次,所以第一个未出现的数为2
题目思路:有q次询问求数字出现次数的题目很容易就想到了用莫队算法,但是这个题是有修改操作的,所以我们对于每次询问操作在离线的时候多加入一个属性 t ,t是用来记录当前这个询问操作是再第 t 次修改操作之后的状态,我们在后面移动区间求答案的时候就需要多加入一个时间节点的移动,对于当前询问,如果上一次询问时的时间节点是大于当前时间节点的话,就需要将时间节点退回至所需要的时间节点,再将修改过的值改回原来的值(所以修改操作也要用一个结构体存储,记录修改前的值和修改后的值)。由于是带修改的莫队,所以分块的时候不能再分为块了,大概是分成1/3块左右,然后在排序的时候,最后记得将时间节点也进行排序。(因为相同时间节点的询问就可以不用对时间节点进行移动了,可以降低时间复杂度,按普通的分块排序这题是会T到怀疑人生的)。
具体的实现方法看代码吧:
#include <bits/stdc++.h>
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define pb push_back
#define MP make_pair
#define lowbit(x) x&-x
#define FIN freopen("in.txt","r",stdin)
#define debug(x) cout<<"["<<x<<"]"<<endl
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int,int>pii;
const int MX=1e5+7;
const int INF=0x3f3f3f3f;
int n,m;
int a[MX],pos[MX];
int num1[MX*2],num2[MX*2];
//num2[x]表示x这个数字出现了几次,num1[x]表示出现了x次的数字有多少个
struct node{
int l,r,t,id;
int ans;
}q[MX];
bool cmp(node a,node b){
if(pos[a.l]!=pos[b.l]) return a.l<b.l;
if(pos[a.r]!=pos[b.r]) return a.r<b.r;
return a.t<b.t;
}
struct modity{
int p,pre,val;
}mty[MX];
vector<int>has;//本题的a的范围是1e9,所以要进行离散化操作
int get_id(int x){
return lower_bound(has.begin(),has.end(),x)-has.begin()+1;
}
void add(int x){
num1[num2[x]]--;
num2[x]++;
num1[num2[x]]++;
}
void del(int x){
num1[num2[x]]--;
num2[x]--;
num1[num2[x]]++;
}
int main(){
//FIN;
num1[0]=1e8;
scanf("%d%d",&n,&m);
int block=2000;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
has.pb(a[i]);
pos[i]=(i-1)/block;
}
int nw=0,cnt1=0,cnt2=1;
for(int i=1;i<=m;i++){
int op;scanf("%d",&op);
if(op==1){
scanf("%d%d",&q[cnt1].l,&q[cnt1].r);
q[cnt1].id=cnt1;
q[cnt1].t=nw;
cnt1++;
} else{
scanf("%d%d",&mty[cnt2].p,&mty[cnt2].val);nw++;
mty[cnt2].pre=a[mty[cnt2].p];
a[mty[cnt2].p]=mty[cnt2].val;
has.pb(mty[cnt2].val);
cnt2++;
}
}
sort(has.begin(),has.end());
has.erase(unique(has.begin(),has.end()),has.end());
sort(q,q+cnt1,cmp);
for(int i=1;i<=n;i++)
a[i]=get_id(a[i]);
for(int i=1;i<=cnt2;i++){
mty[i].pre=get_id(mty[i].pre);
mty[i].val=get_id(mty[i].val);
}
int tmp=nw,l=1,r=0;
for(int i=0;i<cnt1;i++){
int res=1;
while(r<q[i].r) add(a[++r]);
while(l>q[i].l) add(a[--l]);
while(r>q[i].r) del(a[r--]);
while(l<q[i].l) del(a[l++]);
//时间节点的移动
while(tmp<q[i].t){
tmp++;
if(mty[tmp].p>=l && mty[tmp].p<=r){
del(mty[tmp].pre);
add(mty[tmp].val);
}
a[mty[tmp].p]=mty[tmp].val;
}
while(tmp>q[i].t){
if(mty[tmp].p>=l && mty[tmp].p<=r){
del(mty[tmp].val);
add(mty[tmp].pre);
}
a[mty[tmp].p]=mty[tmp].pre;
tmp--;
}
while(num1[res]>0) res++;
q[q[i].id].ans=res;
}
for(int i=0;i<cnt1;i++)
printf("%d\n",q[i].ans);
return 0;
}