矩阵分析
向量序列
- 向量序列记为 { x ( k ) } : x ( 1 ) , x ( 1 ) , … , x ( k ) , … , 其中 x ( k ) ∈ C n 向量序列记为\{x^{(k)}\}:x^{(1)},x^{(1)},\dots,x^{(k)},\dots,其中x^{(k)}\in\mathbb{C}^n 向量序列记为{x(k)}:x(1),x(1),…,x(k),…,其中x(k)∈Cn
-
设
x
(
k
)
,
x
∈
C
n
,
k
=
1
,
2
,
…
,向量序列
{
x
(
k
)
}
收敛于向量
x
,则
∥
x
(
k
)
−
x
∥
→
0
,
k
→
+
∞
设x^{(k)},x\in\mathbb{C}^n,k=1,2,\dots,向量序列\{x^{(k)}\}收敛于向量x,则\begin{Vmatrix}x^{(k)}-x\end{Vmatrix}\rightarrow0,k\rightarrow+\infty
设x(k),x∈Cn,k=1,2,…,向量序列{x(k)}收敛于向量x,则
x(k)−x
→0,k→+∞
- 记为 lim k → + ∞ x ( k ) = x 或 x ( k ) → x , k → + ∞ 记为\mathop{\text{lim}}\limits_{k\rightarrow+\infty}x^{(k)}=x或x^{(k)}\rightarrow x,k\rightarrow+\infty 记为k→+∞limx(k)=x或x(k)→x,k→+∞
- 依范数收敛 依范数收敛 依范数收敛
Ex1 设 x ( k ) = ( 1 + 1 2 k , 1 + 1 3 k , … , 1 + 1 ( n + 1 ) k ) T , x = ( 1 , 1 , … , 1 ) T , 试证: lim k → + ∞ x ( k ) = x \text{Ex1}\;设x^{(k)}=(1+\frac{1}{2^k},1+\frac{1}{3^k},\dots,1+\frac{1}{(n+1)^k})^T,x=(1,1,\dots,1)^T,试证:\mathop{\text{lim}}\limits_{k\rightarrow+\infty}x^{(k)}=x Ex1设x(k)=(1+2k1,1+3k1,…,1+(n+1)k1)T,x=(1,1,…,1)T,试证:k→+∞limx(k)=x
- x ( k ) − x = ( 1 2 k 1 3 k … 1 ( n + 1 ) k ) ∥ x ( k ) − x ∥ ∞ = max 2 ≤ i ≤ n + 1 1 i k = 1 2 k → k → + ∞ 0 ∴ lim k → + ∞ x ( k ) = x \begin{align} & x^{(k)}-x=\begin{pmatrix}\frac{1}{2^k}&\frac{1}{3^k}&\dots&\frac{1}{(n+1)^k}\end{pmatrix}\nonumber\\ & \begin{Vmatrix}x^{(k)}-x\end{Vmatrix}_\infty=\mathop{\text{max}}\limits_{2\le i\le n+1}\frac{1}{i^k}=\frac{1}{2^k}\xrightarrow{k\rightarrow+\infty}0\nonumber\\ & \therefore \mathop{\text{lim}}\limits_{k\rightarrow+\infty}x^{(k)}=x\nonumber \end{align} x(k)−x=(2k13k1…(n+1)k1) x(k)−x ∞=2≤i≤n+1maxik1=2k1k→+∞0∴k→+∞limx(k)=x
Banach空间
- 赋范线性空间中任意收敛向量序列的极限均属于此赋范线性空间 赋范线性空间中任意收敛向量序列的极限均属于此赋范线性空间 赋范线性空间中任意收敛向量序列的极限均属于此赋范线性空间
- 设 x ( k ) = ( x 1 ( k ) , x 2 ( k ) , … , x n ( k ) ) T , x = ( x 1 , x 2 , … , x n ) T ∈ C n , 则向量序列 { x ( k ) } 收敛于 x 设x^{(k)}=(x_1^{(k)},x_2^{(k)},\dots,x_n^{(k)})^T,x=(x_1,x_2,\dots,x_n)^T\in\mathbb{C}^n,则向量序列\{x^{(k)}\}收敛于x 设x(k)=(x1(k),x2(k),…,xn(k))T,x=(x1,x2,…,xn)T∈Cn,则向量序列{x(k)}收敛于x
矩阵序列
矩阵序列的极限运算性质
-
若 lim k → + ∞ A ( k ) = A , lim k → + ∞ B ( k ) = B . A ( k ) , B ( k ) ∈ C m × n 若\mathop{\text{lim}}\limits_{k\to +\infty}A^{(k)}=A,\mathop{\text{lim}}\limits_{k\to +\infty}B^{(k)}=B.A^{(k)},B^{(k)}\in\mathbb{C}^{m\times n} 若k→+∞limA(k)=A,k→+∞limB(k)=B.A(k),B(k)∈Cm×n
- lim k → + ∞ ( a A ( k ) ± b B ( k ) ) = a A ± b B a , b ∈ C \mathop{\text{lim}}\limits_{k\to +\infty}(aA^{(k)}\pm bB^{(k)})=aA\pm bB\;a,b\in\mathbb{C} k→+∞lim(aA(k)±bB(k))=aA±bBa,b∈C
- lim k → + ∞ ( A ( k ) B ( k ) ) = A B A ( k ) , B ( k ) ∈ C m × n \mathop{\text{lim}}\limits_{k\to +\infty}(A^{(k)}B^{(k)})=AB\;A^{(k)},B^{(k)}\in\mathbb{C}^{m\times n} k→+∞lim(A(k)B(k))=ABA(k),B(k)∈Cm×n
- 若 A ( k ) , A 均为可逆方阵,则 { ( A ( k ) ) − 1 } 也收敛,且 lim k → + ∞ ( A ( k ) ) − 1 = A − 1 若A^{(k)},A均为可逆方阵,则\{(A^{(k)})^{-1}\}也收敛,且\mathop{\text{lim}}\limits_{k\to +\infty}(A^{(k)})^{-1}=A^{-1} 若A(k),A均为可逆方阵,则{(A(k))−1}也收敛,且k→+∞lim(A(k))−1=A−1
-
幂矩阵序列 { A ( k ) } : A 1 , A 2 , … , A k , … , A ∈ C n × n 幂矩阵序列\{A^{(k)}\}:A^1,A^2,\dots,A^k,\dots,A\in\mathbb{C}^{n\times n} 幂矩阵序列{A(k)}:A1,A2,…,Ak,…,A∈Cn×n
- lim k → + ∞ A k = 0 ⇔ ρ ( A ) < 1 \mathop{\text{lim}}\limits_{k\to +\infty}A^{k}=0\Leftrightarrow\rho(A)<1 k→+∞limAk=0⇔ρ(A)<1
- ∥ A ∥ < 1 ⇒ lim k → + ∞ A k = 0 \begin{Vmatrix}A\end{Vmatrix}<1\Rightarrow\mathop{\text{lim}}\limits_{k\to +\infty}A^{k}=0 A <1⇒k→+∞limAk=0
- 收敛矩阵 A : A k 收敛于零矩阵 收敛矩阵A:A^k收敛于零矩阵 收敛矩阵A:Ak收敛于零矩阵
Ex2 A = ( 0.2 0.5 0.1 0.1 0.5 0.3 0.2 0.4 0.2 ) , ∥ A ∥ ∞ = 0.9 ⇒ lim k → + ∞ A k = 0 \text{Ex2}\;A=\begin{pmatrix}0.2&0.5&0.1\\0.1&0.5&0.3\\0.2&0.4&0.2\end{pmatrix},\begin{Vmatrix}A\end{Vmatrix}_\infty=0.9\Rightarrow\mathop{\text{lim}}\limits_{k\to +\infty}A^{k}=0 Ex2A= 0.20.10.20.50.50.40.10.30.2 , A ∞=0.9⇒k→+∞limAk=0
矩阵级数
定义
-
∑ k = 1 ∞ A k = A ( 1 ) + A ( 2 ) + ⋯ + A ( k ) + … , A ( k ) 为矩阵级数一般项 \sum_{k=1}^\infty A^{k}=A^{(1)}+A^{(2)}+\dots+A^{(k)}+\dots,A^{(k)}为矩阵级数一般项 ∑k=1∞Ak=A(1)+A(2)+⋯+A(k)+…,A(k)为矩阵级数一般项
-
矩阵级数敛散性 矩阵级数敛散性 矩阵级数敛散性
- 矩阵级数部分和: S ( N ) = A ( 1 ) + A ( 2 ) + ⋯ + A ( N ) 矩阵级数部分和:S^{(N)}=A^{(1)}+A^{(2)}+\dots+A^{(N)} 矩阵级数部分和:S(N)=A(1)+A(2)+⋯+A(N)
- 矩阵级数收敛: lim N → ∞ S ( N ) = S 存在 矩阵级数收敛:\mathop{\lim}\limits_{N\to\infty}S^{(N)}=S存在 矩阵级数收敛:N→∞limS(N)=S存在
-
A k = ( a 11 ( k ) … a 1 n ( k ) ⋮ ⋱ ⋮ a m 1 ( k ) … a m n ( k ) ) S ( N ) = ( ∑ k = 1 N a 11 ( k ) … ∑ k = 1 N a 1 n ( k ) ⋮ ⋱ ⋮ ∑ k = 1 N a m 1 ( k ) … ∑ k = 1 N a m n ( k ) ) A^{k}= \begin{pmatrix} a_{11}^{(k)}&\dots&a_{1n}^{(k)}\\ \vdots&\ddots&\vdots\\ a_{m1}^{(k)}&\dots&a_{mn}^{(k)} \end{pmatrix} \; S^{(N)}= \begin{pmatrix} \sum_{k=1}^Na_{11}^{(k)}&\dots&\sum_{k=1}^Na_{1n}^{(k)}\\ \vdots&\ddots&\vdots\\ \sum_{k=1}^Na_{m1}^{(k)}&\dots&\sum_{k=1}^Na_{mn}^{(k)} \end{pmatrix} \; Ak= a11(k)⋮am1(k)…⋱…a1n(k)⋮amn(k) S(N)= ∑k=1Na11(k)⋮∑k=1Nam1(k)…⋱…∑k=1Na1n(k)⋮∑k=1Namn(k)
性质
-
∑ k = 1 ∞ A ( k ) 收敛 ⇔ m n 个数项级数 ∑ k = 1 ∞ a i j ( k ) 收敛 \sum_{k=1}^{\infty}A^{(k)}收敛\Leftrightarrow mn个数项级数\sum_{k=1}^{\infty}a_{ij}^{(k)}收敛 ∑k=1∞A(k)收敛⇔mn个数项级数∑k=1∞aij(k)收敛
-
∑ k = 1 ∞ A ( k ) 收敛 ⇒ lim k → + ∞ A ( k ) = 0 \sum_{k=1}^{\infty}A^{(k)}收敛\Rightarrow \mathop{\lim}\limits_{k\to+\infty}A^{(k)}=0 ∑k=1∞A(k)收敛⇒k→+∞limA(k)=0
-
∑ k = 1 ∞ A ( k ) = S 1 , ∑ k = 1 ∞ B ( k ) = S 2 , 则 ∑ k = 1 ∞ A ( k ) ± B ( k ) = S 1 ± S 2 \sum_{k=1}^{\infty}A^{(k)}=S_1,\sum_{k=1}^{\infty}B^{(k)}=S_2,则\sum_{k=1}^{\infty}A^{(k)}\pm B^{(k)}=S_1 \pm S_2 ∑k=1∞A(k)=S1,∑k=1∞B(k)=S2,则∑k=1∞A(k)±B(k)=S1±S2
-
∑ k = 1 ∞ A ( k ) = S , μ ∈ C , 则 ∑ k = 1 ∞ μ A ( k ) = μ S \sum_{k=1}^{\infty}A^{(k)}=S,\mu\in\mathbb{C},则\sum_{k=1}^{\infty}\mu A^{(k)}=\mu S ∑k=1∞A(k)=S,μ∈C,则∑k=1∞μA(k)=μS
绝对收敛
-
若矩阵级数 ∑ k = 1 ∞ A ( k ) 绝对收敛:对应的 m × n 个数项级数 ∑ k = 1 ∞ a i j ( k ) 绝对收敛 若矩阵级数\sum_{k=1}^{\infty}A^{(k)}绝对收敛:对应的m\times n个数项级数\sum_{k=1}^{\infty}a_{ij}^{(k)}绝对收敛 若矩阵级数∑k=1∞A(k)绝对收敛:对应的m×n个数项级数∑k=1∞aij(k)绝对收敛
-
定理: ∑ k = 1 ∞ A ( k ) 绝对收敛 ⇔ 对 ∀ 范数 ∥ ⋅ ∥ , ∑ k = 1 ∞ ∥ A ( k ) ∥ 收敛 定理:\sum_{k=1}^{\infty}A^{(k)}绝对收敛\Leftrightarrow对\forall范数\begin{Vmatrix}\cdot\end{Vmatrix},\sum_{k=1}^{\infty}\begin{Vmatrix}A^{(k)}\end{Vmatrix}收敛 定理:∑k=1∞A(k)绝对收敛⇔对∀范数 ⋅ ,∑k=1∞ A(k) 收敛
矩阵幂级数
-
∑ k = 0 ∞ c k A k = c 0 I + c 1 A + c 2 A 2 + ⋯ + c k A k + … \sum_{k=0}^\infty c_kA^k=c_0I+c_1A+c_2A^2+\dots+c_kA^k+\dots ∑k=0∞ckAk=c0I+c1A+c2A2+⋯+ckAk+…
-
定理:正项级数 ∣ c 0 ∣ ∥ I ∥ + ∑ k = 1 ∞ ∣ c k ∣ ∥ A ∥ k 收敛,则 ∑ k = 0 ∞ c k A k 绝对收敛 定理:正项级数|c_0|\begin{Vmatrix}I\end{Vmatrix}+\sum_{k=1}^\infty|c_k|\begin{Vmatrix}A\end{Vmatrix}^k收敛,则\sum_{k=0}^\infty c_kA^k绝对收敛 定理:正项级数∣c0∣ I +∑k=1∞∣ck∣ A k收敛,则∑k=0∞ckAk绝对收敛
- 若矩阵 A 在某一种范数 ∥ A ∥ 在纯量幂级数 ∑ k = 0 ∞ c k z k 的收敛圆内,则矩阵 ∑ k = 0 ∞ c k A k 收敛 若矩阵A在某一种范数\begin{Vmatrix}A\end{Vmatrix}在纯量幂级数\sum_{k=0}^\infty c_kz^k的收敛圆内,则矩阵\sum_{k=0}^\infty c_kA^k收敛 若矩阵A在某一种范数 A 在纯量幂级数∑k=0∞ckzk的收敛圆内,则矩阵∑k=0∞ckAk收敛
Ex3 A = ( 0.2 0.5 0.1 0.1 0.5 0.3 0.2 0.4 0.2 ) , 则 I + A + A 2 + … 绝对收敛 \text{Ex3}\;A=\begin{pmatrix}0.2&0.5&0.1\\0.1&0.5&0.3\\0.2&0.4&0.2\end{pmatrix},则I+A+A^2+\dots绝对收敛 Ex3A= 0.20.10.20.50.50.40.10.30.2 ,则I+A+A2+…绝对收敛
-
定理 定理 定理
-
设 A ( k ) ∈ C n × n , 如果 A 的谱半径 ρ ( A ) 的值在纯量幂级数 ∑ k = 0 ∞ c k z k 的收敛圆内,则 ∑ k = 0 ∞ c k A k 绝对收敛 设A^{(k)}\in\mathbb{C}^{n\times n},如果A的谱半径\rho(A)的值在纯量幂级数\sum_{k=0}^\infty c_kz^k的收敛圆内,则\sum_{k=0}^\infty c_kA^k绝对收敛 设A(k)∈Cn×n,如果A的谱半径ρ(A)的值在纯量幂级数∑k=0∞ckzk的收敛圆内,则∑k=0∞ckAk绝对收敛
-
如果 A 的特征值中有一个在 ∑ k = 0 ∞ c k z k 收敛圆外,则 ∑ k = 0 ∞ c k A k 发散 如果A的特征值中有一个在\sum_{k=0}^\infty c_kz^k收敛圆外,则\sum_{k=0}^\infty c_kA^k发散 如果A的特征值中有一个在∑k=0∞ckzk收敛圆外,则∑k=0∞ckAk发散
-
定理条件要求 ρ ( A ) < R 定理条件要求\rho(A)<R 定理条件要求ρ(A)<R
- R = 1 ρ , ρ = lim k → ∞ ∣ c k + 1 ∣ ∣ c k ∣ R=\frac{1}{\rho},\rho=\mathop{\lim}\limits_{k \to \infty}\frac{|c_{k+1}|}{|c_k|} R=ρ1,ρ=k→∞lim∣ck∣∣ck+1∣
-
-
定理: 矩阵幂级数 ∑ k = 0 ∞ A k = I + A + A 2 + ⋯ + A k + … 绝对收敛 ⇔ ρ ( A ) < 1 , 且 I + A + A 2 + ⋯ + A k + ⋯ = ( I − A ) − 1 定理: \begin{align} & 矩阵幂级数\sum_{k=0}^\infty A^k=I+A+A^2+\dots+A^k+\dots绝对收敛\nonumber\\ & \Leftrightarrow\rho(A)<1,且I+A+A^2+\dots+A^k+\dots=(I-A)^{-1}\nonumber \end{align} 定理:矩阵幂级数k=0∑∞Ak=I+A+A2+⋯+Ak+…绝对收敛⇔ρ(A)<1,且I+A+A2+⋯+Ak+⋯=(I−A)−1
Ex4 设 A = ( 0.1 0.7 0.3 0.6 ) , 求 ∑ k = 0 ∞ A k \text{Ex4}\;设A=\begin{pmatrix}0.1&0.7\\0.3&0.6\end{pmatrix},求\sum_{k=0}^\infty A^k Ex4设A=(0.10.30.70.6),求∑k=0∞Ak
-
∣ λ I − A ∣ = ∣ λ − 1 − 0.7 − 0.3 λ − 0.6 ∣ = λ 2 − 0.7 λ − 0.15 = 0 ⇒ λ = 0.7 ± 1.09 2 ⇒ ρ ( A ) = 0.7 + 1.09 2 < 1 ⇒ ∑ k = 0 ∞ A k 绝对收敛 则 ∑ k = 0 ∞ A k = ( 1 − A ) − 1 = 1 0.15 ( 0.4 0.7 0.3 0.9 ) \begin{align} & |\lambda I-A|=\begin{vmatrix}\lambda-1&-0.7\\-0.3&\lambda-0.6\end{vmatrix}=\lambda^2-0.7\lambda-0.15=0\nonumber\\ & \Rightarrow \lambda=\frac{0.7\pm \sqrt{1.09}}{2}\Rightarrow\rho(A)=\frac{0.7+\sqrt{1.09}}{2}<1\Rightarrow\sum_{k=0}^\infty A^k绝对收敛\nonumber\\ & 则\sum_{k=0}^\infty A^k=(1-A)^{-1}=\frac{1}{0.15}\begin{pmatrix}0.4&0.7\\0.3&0.9\end{pmatrix}\nonumber \end{align} ∣λI−A∣= λ−1−0.3−0.7λ−0.6 =λ2−0.7λ−0.15=0⇒λ=20.7±1.09⇒ρ(A)=20.7+1.09<1⇒k=0∑∞Ak绝对收敛则k=0∑∞Ak=(1−A)−1=0.151(0.40.30.70.9)
-
矩阵幂级数 ∑ k = 0 ∞ c k A k 的敛散性对应纯量幂级数 ∑ k = 0 ∞ c k z k 的敛散性 矩阵幂级数\sum_{k=0}^\infty c_kA^k的敛散性对应纯量幂级数\sum_{k=0}^\infty c_kz^k的敛散性 矩阵幂级数∑k=0∞ckAk的敛散性对应纯量幂级数∑k=0∞ckzk的敛散性
-
纯量幂级数的和函数 S ( z ) = ∑ k = 0 ∞ c k z k 在其收敛域 ( − R , R ) 内连续、可积、可微 纯量幂级数的和函数S(z)=\sum_{k=0}^\infty c_kz^k在其收敛域(-R,R)内连续、可积、可微 纯量幂级数的和函数S(z)=∑k=0∞ckzk在其收敛域(−R,R)内连续、可积、可微
对应矩阵幂级数的和函数 f ( A ) = ∑ k = 0 ∞ c k A k , ρ ( A ) < R 对应矩阵幂级数的和函数f(A)=\sum_{k=0}^\infty c_kA^k,\rho(A)<R 对应矩阵幂级数的和函数f(A)=∑k=0∞ckAk,ρ(A)<R
-
在 ρ ( A < R 时,利用前 k + 1 项和求,和函数的近似值: 在\rho(A<R时,利用前k+1项和求,和函数的近似值: 在ρ(A<R时,利用前k+1项和求,和函数的近似值:
f ( A ) = ∑ k = 0 ∞ c k A k ≈ c 0 I + c 1 A + c 2 A 2 + ⋯ + c k A k 误差较小 f(A)=\sum_{k=0}^\infty c_kA^k\approx c_0I+c_1A+c_2A^2+\dots+c_kA^k误差较小 f(A)=∑k=0∞ckAk≈c0I+c1A+c2A2+⋯+ckAk误差较小
-
定理: ∥ A ∥ < 1 , ∀ 非负整数 k ,有 ∥ ( 1 − A ) − 1 − ( I + A + A 2 + ⋯ + A k ) ∥ < ∥ A ∥ k + 1 1 − ∥ A ∥ 定理:\begin{Vmatrix}A\end{Vmatrix}<1,\forall非负整数k,有\begin{Vmatrix}(1-A)^{-1}-(I+A+A^2+\dots+A^k)\end{Vmatrix}<\frac{\begin{Vmatrix}A\end{Vmatrix}^{k+1}}{1-\begin{Vmatrix}A\end{Vmatrix}} 定理: A <1,∀非负整数k,有 (1−A)−1−(I+A+A2+⋯+Ak) <1−∥A∥∥A∥k+1
Ex5 设 A = ( − 1 1 1 − 5 21 17 6 − 26 − 21 ) , 讨论 ∑ k = 0 ∞ ( − 1 ) k 1 3 k + 1 k 2 A k 的敛散性 \text{Ex5}\;设A=\begin{pmatrix}-1&1&1\\-5&21&17\\6&-26&-21\end{pmatrix},讨论\sum_{k=0}^\infty(-1)^k\frac{1}{3^{k+1}k^2}A^k的敛散性 Ex5设A= −1−56121−26117−21 ,讨论∑k=0∞(−1)k3k+1k21Ak的敛散性
- 求收敛半径 R : c k = ( − 1 ) k 1 3 k + 1 k 2 ⇒ ρ = lim k → ∞ ∣ c k + 1 ∣ ∣ c k ∣ = 1 3 ⇒ R = 1 ρ = 3 求谱半径 ρ ( A ) : ∣ λ I − A ∣ = ∣ λ + 1 − 1 − 1 5 λ − 21 − 17 − 6 26 λ + 21 ∣ = λ 2 ( λ + 1 ) = 0 ⇒ ρ ( A ) = 1 判断敛散性 : ρ ( A ) = 1 < R , 收敛 \begin{align} & 求收敛半径R:c_k=(-1)^k\frac{1}{3^{k+1}k^2}\Rightarrow\rho=\mathop{\lim}\limits_{k\to\infty}\frac{|c_{k+1}|}{|c_k|}=\frac{1}{3}\Rightarrow R=\frac{1}{\rho}=3\nonumber\\ & 求谱半径\rho(A):|\lambda I-A|= \begin{vmatrix} \lambda+1&-1&-1\\ 5&\lambda-21&-17\\ -6&26&\lambda+21 \end{vmatrix} =\lambda^2(\lambda+1)=0\Rightarrow \rho(A)=1\nonumber\\ & 判断敛散性:\rho(A)=1<R,收敛\nonumber \end{align} 求收敛半径R:ck=(−1)k3k+1k21⇒ρ=k→∞lim∣ck∣∣ck+1∣=31⇒R=ρ1=3求谱半径ρ(A):∣λI−A∣= λ+15−6−1λ−2126−1−17λ+21 =λ2(λ+1)=0⇒ρ(A)=1判断敛散性:ρ(A)=1<R,收敛
Ex6
设
A
=
(
0
a
a
a
0
a
a
a
0
)
,
求
a
为何值时,
∑
k
=
0
∞
(
−
1
)
k
−
1
1
2
k
k
A
k
收敛
\text{Ex6}\;设A=\begin{pmatrix}0&a&a\\a&0&a\\a&a&0\end{pmatrix},求a为何值时,\sum_{k=0}^\infty(-1)^{k-1}\frac{1}{2^kk}A^k收敛
Ex6设A=
0aaa0aaa0
,求a为何值时,∑k=0∞(−1)k−12kk1Ak收敛
c
k
=
(
−
1
)
k
−
1
1
2
k
k
⇒
R
=
2
…
\begin{align} & c_k=(-1)^{k-1}\frac{1}{2^kk}\Rightarrow R=2\nonumber\\ & \dots\nonumber \end{align}
ck=(−1)k−12kk1⇒R=2…
矩阵函数
常见矩阵函数
-
一般形式: ∀ A ∈ C n × n → f ( A ) = ∑ k = 0 ∞ c k A k 一般形式:\forall A\in\mathbb{C}^{n \times n}\to f(A)=\sum_{k=0}^\infty c_kA^k 一般形式:∀A∈Cn×n→f(A)=∑k=0∞ckAk
- 纯量幂级数 f ( z ) = ∑ k = 0 ∞ c k z k ⇒ 矩阵幂级数 f ( A ) = ∑ k = 0 ∞ c k A k 纯量幂级数f(z)=\sum_{k=0}^\infty c_kz^k\Rightarrow矩阵幂级数f(A)=\sum_{k=0}^\infty c_kA^k 纯量幂级数f(z)=∑k=0∞ckzk⇒矩阵幂级数f(A)=∑k=0∞ckAk
- 矩阵指数函数: e A = ∑ k = 0 ∞ A k k ! 矩阵指数函数:e^A=\sum_{k=0}^\infty\frac{A^k}{k!} 矩阵指数函数:eA=∑k=0∞k!Ak
- 矩阵三角函数: sin A = ∑ k = 0 ∞ ( − 1 ) k A 2 k + 1 ( 2 k + 1 ) ! , cos A = ∑ k = 0 ∞ ( − 1 ) k A 2 k ( 2 k ) ! 矩阵三角函数:\sin A=\sum_{k=0}^\infty(-1)^k\frac{A^{2k+1}}{(2k+1)!},\cos A=\sum_{k=0}^\infty(-1)^k\frac{A^{2k}}{(2k)!} 矩阵三角函数:sinA=∑k=0∞(−1)k(2k+1)!A2k+1,cosA=∑k=0∞(−1)k(2k)!A2k
-
定理: A B = B A → e A ⋅ e B = e B ⋅ e A = e A + B 定理:AB=BA\to e^A\cdot e^B=e^B\cdot e^A=e^{A+B} 定理:AB=BA→eA⋅eB=eB⋅eA=eA+B
-
∀ A ∈ C n × n , e A 总可逆,且 ( e A ) − 1 = e − A \forall A\in\mathbb{C}^{n \times n},e^A总可逆,且(e^A)^{-1}=e^{-A} ∀A∈Cn×n,eA总可逆,且(eA)−1=e−A
∵ e A ⋅ e − A = e A + ( − A ) = e 0 , e A = ∑ k = 0 ∞ A k k ! ⇒ e 0 = ∑ k = 0 ∞ 0 k k ! = I ∴ e A ⋅ e − A = I ⇒ ( e A ) − 1 = e − A \begin{align} &\because e^A\cdot e^{-A}=e^{A+(-A)}=e^0,e^A=\sum_{k=0}^\infty\frac{A^k}{k!}\Rightarrow e^0=\sum_{k=0}^\infty\frac{0^k}{k!}=I\nonumber\\ & \therefore e^A\cdot e^{-A}=I\Rightarrow (e^A)^{-1}=e^{-A}\nonumber \end{align} ∵eA⋅e−A=eA+(−A)=e0,eA=k=0∑∞k!Ak⇒e0=k=0∑∞k!0k=I∴eA⋅e−A=I⇒(eA)−1=e−A -
∀ A ∈ C n × n , 有 ( e A ) m = e m A \forall A\in \mathbb{C}^{n\times n},有(e^A)^m=e^{mA} ∀A∈Cn×n,有(eA)m=emA
-
矩阵函数值的计算
凯莱 − 哈密顿定理 凯莱-哈密顿定理 凯莱−哈密顿定理
利用相似矩阵 利用相似矩阵 利用相似矩阵
- A 可对角化: f ( A ) = C diag ( f ( λ 1 ) f ( λ 2 ) … f ( λ n ) ) C − 1 A可对角化:f(A)=C\text{diag}\begin{pmatrix}f(\lambda_1)&f(\lambda_2)&\dots&f(\lambda_n)\end{pmatrix}C^{-1} A可对角化:f(A)=Cdiag(f(λ1)f(λ2)…f(λn))C−1
Ex7 设 A = ( 3 2 1 2 ) , 求 A 4 + 2 A 3 + A 及 e A , sin A \text{Ex7}\;设A=\begin{pmatrix}3&2\\1&2\end{pmatrix},求A^4+2A^3+A及e^A,\sin A Ex7设A=(3122),求A4+2A3+A及eA,sinA
-
( 1 ) 求 A 的特征值、特征向量 ∣ λ I − A ∣ = ( λ − 3 − 2 − 1 λ − 2 ) = λ 2 − 5 λ + 4 ⇒ λ 1 = 1 , λ 2 = 4 分别对应特征向量 ( − 1 1 ) T , ( 2 1 ) T ( 2 ) 确定相似变换和对角阵 C = ( − 1 2 1 1 ) , C − 1 = ( − 1 3 2 3 1 3 1 3 ) ⇒ C − 1 A C = Λ = ( 1 0 0 4 ) ⇒ A = C ( 1 0 0 4 ) C − 1 ( 3 ) 计算函数值 f ( A ) = C diag ( f ( λ 1 ) f ( λ 2 ) ) C − 1 A 4 + 2 A 3 + A = ( − 1 2 1 1 ) ( 4 0 0 388 ) ( − 1 3 2 3 1 3 1 3 ) = ( 260 256 128 132 ) e A = ( − 1 2 1 1 ) ( e 1 0 0 e 4 ) ( − 1 3 2 3 1 3 1 3 ) = 1 3 ( e 1 + 2 e 4 − 2 e 1 + e 4 − e 1 + e 4 2 e 1 + e 4 ) sin A = ( − 1 2 1 1 ) ( sin 1 0 0 sin 4 ) ( − 1 3 2 3 1 3 1 3 ) = 1 3 ( sin 1 + 2 sin 4 − 2 sin 1 + sin 4 − sin 1 + sin 4 2 sin 1 + sin 4 ) \begin{align} & (1)求A的特征值、特征向量\nonumber\\ & |\lambda I-A|=\begin{pmatrix}\lambda-3&-2\\-1&\lambda-2\end{pmatrix}=\lambda^2-5\lambda+4\Rightarrow\lambda_1=1,\lambda_2=4\nonumber\\ & 分别对应特征向量\nonumber\begin{pmatrix}-1&1\end{pmatrix}^T,\begin{pmatrix}2&1\end{pmatrix}^T\\ & (2)确定相似变换和对角阵\nonumber\\ & C=\begin{pmatrix}-1&2\\1&1\end{pmatrix},C^{-1}=\begin{pmatrix}-\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{pmatrix}\Rightarrow C^{-1}AC=\Lambda=\begin{pmatrix}1&0\\0&4\end{pmatrix}\nonumber\\ &\Rightarrow A=C\begin{pmatrix}1&0\\0&4\end{pmatrix}C^{-1}\nonumber\\ & (3)计算函数值\nonumber\\ & f(A)=C\text{diag}\begin{pmatrix}f(\lambda_1)&f(\lambda_2)\end{pmatrix}C^{-1}\nonumber\\ & A^4+2A^3+A=\begin{pmatrix}-1&2\\1&1\end{pmatrix}\begin{pmatrix}4&0\\0&388\end{pmatrix}\begin{pmatrix}-\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{pmatrix}=\begin{pmatrix}260&256\\128&132\end{pmatrix}\nonumber\\ & e^A=\begin{pmatrix}-1&2\\1&1\end{pmatrix}\begin{pmatrix}e^1&0\\0&e^4\end{pmatrix}\begin{pmatrix}-\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{pmatrix}=\frac{1}{3}\begin{pmatrix}e^1+2e^4&-2e^1+e^4\\-e^1+e^4&2e^1+e^4\end{pmatrix}\nonumber\\ & \sin A=\begin{pmatrix}-1&2\\1&1\end{pmatrix}\begin{pmatrix}\sin 1&0\\0&\sin 4\end{pmatrix}\begin{pmatrix}-\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{pmatrix}=\frac{1}{3}\begin{pmatrix}\sin 1+2 \sin 4&-2\sin 1+\sin 4\\-\sin 1+\sin 4&2\sin 1+\sin 4\end{pmatrix}\nonumber \end{align} (1)求A的特征值、特征向量∣λI−A∣=(λ−3−1−2λ−2)=λ2−5λ+4⇒λ1=1,λ2=4分别对应特征向量(−11)T,(21)T(2)确定相似变换和对角阵C=(−1121),C−1=(−31313231)⇒C−1AC=Λ=(1004)⇒A=C(1004)C−1(3)计算函数值f(A)=Cdiag(f(λ1)f(λ2))C−1A4+2A3+A=(−1121)(400388)(−31313231)=(260128256132)eA=(−1121)(e100e4)(−31313231)=31(e1+2e4−e1+e4−2e1+e42e1+e4)sinA=(−1121)(sin100sin4)(−31313231)=31(sin1+2sin4−sin1+sin4−2sin1+sin42sin1+sin4)
-
A 不可对角化: A ∼ J , 即 ∃ C , C − 1 A C = J ⇒ A = C J C − 1 A不可对角化:A\sim J,即\exist C,C^{-1}AC=J\Rightarrow A=CJC^{-1} A不可对角化:A∼J,即∃C,C−1AC=J⇒A=CJC−1
定义矩阵函数 f ( A ) = C f ( J ) C − 1 = C ( f ( J 1 ( λ 1 ) ) f ( J 2 ( λ 2 ) ⋱ f ( J r ( λ r ) ) ) C − 1 ( ∗ ) 定义矩阵函数f(A)=Cf(J)C^{-1}=C\begin{pmatrix}f(J_1(\lambda_1))\\&f(J_2(\lambda_2)\\&&\ddots\\&&&f(J_r(\lambda_r))\end{pmatrix}C^{-1}(*) 定义矩阵函数f(A)=Cf(J)C−1=C f(J1(λ1))f(J2(λ2)⋱f(Jr(λr)) C−1(∗)
其中 f i ( J i ( λ i ) ) = ( f ( λ i ) f ′ ( λ i ) 1 2 f ′ ′ ( λ i ) … 1 ( n i − 1 ) ! f ( n i − 1 ) ( λ i ) f ( λ i ) f ′ ( λ i ) … 1 ( n i − 1 ) ! f ( n i − 1 ) ( λ i ) ⋱ ⋱ ⋮ ⋱ f ′ ( λ i ) f ( λ i ) ) , ( ∗ ) 为 f ( A ) 的若当标准型 其中f_i(J_i(\lambda_i))=\begin{pmatrix}f(\lambda_i)&f'(\lambda_i)&\frac{1}{2}f''(\lambda_i)&\dots&\frac{1}{(n_i-1)!}f^{(n_i-1)}(\lambda_i)\\&f(\lambda_i)&f'(\lambda_i)&\dots&\frac{1}{(n_i-1)!}f^{(n_i-1)}(\lambda_i)\\&&\ddots&\ddots&\vdots\\&&&\ddots&f'(\lambda_i)\\&&&&f(\lambda_i)\end{pmatrix},(*)为f(A)的若当标准型 其中fi(Ji(λi))= f(λi)f′(λi)f(λi)21f′′(λi)f′(λi)⋱……⋱⋱(ni−1)!1f(ni−1)(λi)(ni−1)!1f(ni−1)(λi)⋮f′(λi)f(λi) ,(∗)为f(A)的若当标准型
- 对于三阶方阵 A ,有 f ( A ) = C f ( J ) C − 1 , J = ( J 1 ⋱ J r ) 对于三阶方阵A,有f(A)=Cf(J)C^{-1},J=\begin{pmatrix}J_1\\&\ddots\\&&J_r\end{pmatrix} 对于三阶方阵A,有f(A)=Cf(J)C−1,J= J1⋱Jr
-
J i = ( λ i ) , r = 3 ⇒ J = Λ = ( λ 1 λ 2 λ 3 ) ⇒ f ( A ) = C f ( Λ ) C − 1 = C diag ( f ( λ 1 ) f ( λ 2 ) … f ( λ n ) ) C − 1 J 1 = ( λ 1 ) , J 2 = ( λ 2 1 0 λ 2 ) ⇒ J = ( J 1 0 0 J 2 ) ⇒ f ( J 1 ) = f ( λ 1 ) , f ( J 2 ) = ( f ( λ 2 ) f ′ ( λ 2 ) 0 f ( λ 2 ) ) J 1 = ( λ 1 1 0 0 λ 2 1 0 0 λ 3 ) ⇒ f ( J 1 ) = ( f ( λ 1 ) f ′ ( λ 1 ) 1 2 f ′ ′ ( λ 1 ) f ( λ 1 ) f ′ ( λ 1 ) f ( λ 1 ) ) \begin{align} &J_i=(\lambda_i),r=3\Rightarrow J=\Lambda=\begin{pmatrix}\lambda_1\\&\lambda_2\\&&\lambda_3\end{pmatrix}\nonumber\\ &\Rightarrow f(A)=Cf(\Lambda)C^{-1}=C\text{diag}\begin{pmatrix}f(\lambda_1)&f(\lambda_2)&\dots&f(\lambda_n)\end{pmatrix}C^{-1}\nonumber\\ &J_1=(\lambda_1),J_2=\begin{pmatrix}\lambda_2&1\\0&\lambda_2\end{pmatrix}\Rightarrow J=\begin{pmatrix}J_1&0\\0&J_2\end{pmatrix}\nonumber\\ &\Rightarrow f(J_1)=f(\lambda_1),f(J_2)=\begin{pmatrix}f(\lambda_2)&f'(\lambda_2)\\0&f(\lambda_2)\end{pmatrix}\nonumber\\ & J_1=\begin{pmatrix}\lambda_1&1&0\\0&\lambda_2&1\\0&0&\lambda_3\end{pmatrix}\Rightarrow f(J_1)=\begin{pmatrix}f(\lambda_1)&f'(\lambda_1)&\frac{1}{2}f''(\lambda_1)\\&f(\lambda_1)&f'(\lambda_1)\\&&f(\lambda_1)\end{pmatrix}\nonumber \end{align} Ji=(λi),r=3⇒J=Λ= λ1λ2λ3 ⇒f(A)=Cf(Λ)C−1=Cdiag(f(λ1)f(λ2)…f(λn))C−1J1=(λ1),J2=(λ201λ2)⇒J=(J100J2)⇒f(J1)=f(λ1),f(J2)=(f(λ2)0f′(λ2)f(λ2))J1= λ1001λ2001λ3 ⇒f(J1)= f(λ1)f′(λ1)f(λ1)21f′′(λ1)f′(λ1)f(λ1)
Ex8 设 A = ( 3 1 − 1 1 2 − 1 2 1 0 ) , 求 e A t 及 1 A \text{Ex8}\;设A=\begin{pmatrix}3&1&-1\\1&2&-1\\2&1&0\end{pmatrix},求e^{At}及\frac{1}{A} Ex8设A= 312121−1−10 ,求eAt及A1
-
∣ λ I − A ∣ = ( λ − 1 ) ( λ − 2 ) 2 ⇒ λ 1 = 1 , λ 2 , 3 = 2 令相似变换 P = ( x 1 ⃗ x 2 ⃗ x 3 ⃗ ) ,则 A P = P J ,得 A ( x 1 ⃗ x 2 ⃗ x 3 ⃗ ) = ( x 1 ⃗ x 2 ⃗ x 3 ⃗ ) ( 1 2 1 2 ) λ 1 = 1 ⇒ x 1 ⃗ = ( 0 1 1 ) T λ 2 = 2 ⇒ x 2 ⃗ = ( 1 0 1 ) T λ 3 = 2 ⇒ 求解 ( 2 I − A ) x 3 ⃗ = − x 2 ⃗ , 得广义特征向量 x 3 ⃗ = ( 1 1 1 ) T P = ( 0 1 1 1 0 1 1 1 1 ) ⇒ P − 1 = ( − 1 0 1 0 − 1 1 1 1 − 1 ) ⇒ A = P J P − 1 = P ( 1 2 1 2 ) P − 1 f ( A ) = P ( f ( J 1 ( λ 1 ) ) f ( J 2 ( λ 2 ) ) ) P − 1 求 e A t : f ( J 1 ) = f ( 1 ) = e t , f ( J 2 ) = ( e 2 t t e 2 t e 2 t ) ⇒ e A t = P ( e t e 2 t t e 2 t e 2 t ) P − 1 求 1 A : f ( J 1 ) = f ( 1 ) = 1 , f ( λ 2 ) = 1 λ 2 , f ′ ( λ 2 ) = − 1 λ 2 2 ⇒ f ( J 2 ) = ( 1 2 − 1 4 0 1 2 ) … \begin{align} & |\lambda I-A|=(\lambda-1)(\lambda-2)^2\Rightarrow\lambda_1=1,\lambda_{2,3}=2\nonumber\\ & 令相似变换P=\begin{pmatrix}\vec{x_1}&\vec{x_2}&\vec{x_3}\end{pmatrix},则AP=PJ,得A\begin{pmatrix}\vec{x_1}&\vec{x_2}&\vec{x_3}\end{pmatrix}=\begin{pmatrix}\vec{x_1}&\vec{x_2}&\vec{x_3}\end{pmatrix}\begin{pmatrix}1\\&2&1\\&&2\end{pmatrix}\nonumber\\ & \lambda_1=1\Rightarrow \vec{x_1}=\begin{pmatrix}0&1&1\end{pmatrix}^T\nonumber\\ & \lambda_2=2\Rightarrow \vec{x_2}=\begin{pmatrix}1&0&1\end{pmatrix}^T\nonumber\\ & \lambda_3=2\Rightarrow求解(2I-A)\vec{x_3} =-\vec{x_2},得广义特征向量\vec{x_3}=\begin{pmatrix}1&1&1\end{pmatrix}^T\nonumber\\ &P=\begin{pmatrix}0&1&1\\1&0&1\\1&1&1\end{pmatrix}\Rightarrow P^{-1}=\begin{pmatrix}-1&0&1\\0&-1&1\\1&1&-1\end{pmatrix}\Rightarrow A=PJP^{-1}=P\begin{pmatrix}1\\&2&1\\&&2\end{pmatrix}P^{-1}\nonumber\\ & f(A)=P\begin{pmatrix}f(J_1(\lambda_1))\\&f(J_2(\lambda_2))\end{pmatrix}P^{-1}\nonumber\\ & 求e^{At}:f(J_1)=f(1)=e^t,f(J_2)=\begin{pmatrix}e^{2t}&te^{2t}\\&e^{2t}\end{pmatrix}\Rightarrow e^{At}=P\begin{pmatrix}e^{t}\\&e^{2t}&te^{2t}\\&&e^{2t}\end{pmatrix}P^{-1} \nonumber \\ &求\frac{1}{A}:f(J_1)=f(1)=1,f(\lambda_2)=\frac{1}{\lambda_2},f'(\lambda_2)=-\frac{1}{\lambda_2^2}\Rightarrow f(J_2)=\begin{pmatrix}\frac{1}{2}& -\frac{1}{4}\\0&\frac{1}{2}\end{pmatrix}\nonumber\\ & \dots\nonumber \end{align} ∣λI−A∣=(λ−1)(λ−2)2⇒λ1=1,λ2,3=2令相似变换P=(x1x2x3),则AP=PJ,得A(x1x2x3)=(x1x2x3) 1212 λ1=1⇒x1=(011)Tλ2=2⇒x2=(101)Tλ3=2⇒求解(2I−A)x3=−x2,得广义特征向量x3=(111)TP= 011101111 ⇒P−1= −1010−1111−1 ⇒A=PJP−1=P 1212 P−1f(A)=P(f(J1(λ1))f(J2(λ2)))P−1求eAt:f(J1)=f(1)=et,f(J2)=(e2tte2te2t)⇒eAt=P ete2tte2te2t P−1求A1:f(J1)=f(1)=1,f(λ2)=λ21,f′(λ2)=−λ221⇒f(J2)=(210−4121)…