矩阵分析笔记

矩阵分析

向量序列

  • 向量序列记为 { x ( k ) } : x ( 1 ) , x ( 1 ) , … , x ( k ) , … , 其中 x ( k ) ∈ C n 向量序列记为\{x^{(k)}\}:x^{(1)},x^{(1)},\dots,x^{(k)},\dots,其中x^{(k)}\in\mathbb{C}^n 向量序列记为{x(k)}:x(1),x(1),,x(k),,其中x(k)Cn
  • 设 x ( k ) , x ∈ C n , k = 1 , 2 , … ,向量序列 { x ( k ) } 收敛于向量 x ,则 ∥ x ( k ) − x ∥ → 0 , k → + ∞ 设x^{(k)},x\in\mathbb{C}^n,k=1,2,\dots,向量序列\{x^{(k)}\}收敛于向量x,则\begin{Vmatrix}x^{(k)}-x\end{Vmatrix}\rightarrow0,k\rightarrow+\infty x(k),xCn,k=1,2,,向量序列{x(k)}收敛于向量x,则 x(k)x 0,k+
    • 记为 lim k → + ∞ x ( k ) = x 或 x ( k ) → x , k → + ∞ 记为\mathop{\text{lim}}\limits_{k\rightarrow+\infty}x^{(k)}=x或x^{(k)}\rightarrow x,k\rightarrow+\infty 记为k+limx(k)=xx(k)x,k+
    • 依范数收敛 依范数收敛 依范数收敛

Ex1    设 x ( k ) = ( 1 + 1 2 k , 1 + 1 3 k , … , 1 + 1 ( n + 1 ) k ) T , x = ( 1 , 1 , … , 1 ) T , 试证: lim k → + ∞ x ( k ) = x \text{Ex1}\;设x^{(k)}=(1+\frac{1}{2^k},1+\frac{1}{3^k},\dots,1+\frac{1}{(n+1)^k})^T,x=(1,1,\dots,1)^T,试证:\mathop{\text{lim}}\limits_{k\rightarrow+\infty}x^{(k)}=x Ex1x(k)=(1+2k1,1+3k1,,1+(n+1)k1)T,x=(1,1,,1)T,试证:k+limx(k)=x

  • x ( k ) − x = ( 1 2 k 1 3 k … 1 ( n + 1 ) k ) ∥ x ( k ) − x ∥ ∞ = max 2 ≤ i ≤ n + 1 1 i k = 1 2 k → k → + ∞ 0 ∴ lim k → + ∞ x ( k ) = x \begin{align} & x^{(k)}-x=\begin{pmatrix}\frac{1}{2^k}&\frac{1}{3^k}&\dots&\frac{1}{(n+1)^k}\end{pmatrix}\nonumber\\ & \begin{Vmatrix}x^{(k)}-x\end{Vmatrix}_\infty=\mathop{\text{max}}\limits_{2\le i\le n+1}\frac{1}{i^k}=\frac{1}{2^k}\xrightarrow{k\rightarrow+\infty}0\nonumber\\ & \therefore \mathop{\text{lim}}\limits_{k\rightarrow+\infty}x^{(k)}=x\nonumber \end{align} x(k)x=(2k13k1(n+1)k1) x(k)x =2in+1maxik1=2k1k+ 0k+limx(k)=x

Banach空间

  • 赋范线性空间中任意收敛向量序列的极限均属于此赋范线性空间 赋范线性空间中任意收敛向量序列的极限均属于此赋范线性空间 赋范线性空间中任意收敛向量序列的极限均属于此赋范线性空间
  • 设 x ( k ) = ( x 1 ( k ) , x 2 ( k ) , … , x n ( k ) ) T , x = ( x 1 , x 2 , … , x n ) T ∈ C n , 则向量序列 { x ( k ) } 收敛于 x 设x^{(k)}=(x_1^{(k)},x_2^{(k)},\dots,x_n^{(k)})^T,x=(x_1,x_2,\dots,x_n)^T\in\mathbb{C}^n,则向量序列\{x^{(k)}\}收敛于x x(k)=(x1(k),x2(k),,xn(k))T,x=(x1,x2,,xn)TCn,则向量序列{x(k)}收敛于x

矩阵序列

矩阵序列的极限运算性质

  • 若 lim k → + ∞ A ( k ) = A , lim k → + ∞ B ( k ) = B . A ( k ) , B ( k ) ∈ C m × n 若\mathop{\text{lim}}\limits_{k\to +\infty}A^{(k)}=A,\mathop{\text{lim}}\limits_{k\to +\infty}B^{(k)}=B.A^{(k)},B^{(k)}\in\mathbb{C}^{m\times n} k+limA(k)=A,k+limB(k)=B.A(k),B(k)Cm×n

    • lim k → + ∞ ( a A ( k ) ± b B ( k ) ) = a A ± b B    a , b ∈ C \mathop{\text{lim}}\limits_{k\to +\infty}(aA^{(k)}\pm bB^{(k)})=aA\pm bB\;a,b\in\mathbb{C} k+lim(aA(k)±bB(k))=aA±bBa,bC
    • lim k → + ∞ ( A ( k ) B ( k ) ) = A B    A ( k ) , B ( k ) ∈ C m × n \mathop{\text{lim}}\limits_{k\to +\infty}(A^{(k)}B^{(k)})=AB\;A^{(k)},B^{(k)}\in\mathbb{C}^{m\times n} k+lim(A(k)B(k))=ABA(k),B(k)Cm×n
    • 若 A ( k ) , A 均为可逆方阵,则 { ( A ( k ) ) − 1 } 也收敛,且 lim k → + ∞ ( A ( k ) ) − 1 = A − 1 若A^{(k)},A均为可逆方阵,则\{(A^{(k)})^{-1}\}也收敛,且\mathop{\text{lim}}\limits_{k\to +\infty}(A^{(k)})^{-1}=A^{-1} A(k),A均为可逆方阵,则{(A(k))1}也收敛,且k+lim(A(k))1=A1
  • 幂矩阵序列 { A ( k ) } : A 1 , A 2 , … , A k , … , A ∈ C n × n 幂矩阵序列\{A^{(k)}\}:A^1,A^2,\dots,A^k,\dots,A\in\mathbb{C}^{n\times n} 幂矩阵序列{A(k)}:A1,A2,,Ak,,ACn×n

    • lim k → + ∞ A k = 0 ⇔ ρ ( A ) < 1 \mathop{\text{lim}}\limits_{k\to +\infty}A^{k}=0\Leftrightarrow\rho(A)<1 k+limAk=0ρ(A)<1
    • ∥ A ∥ < 1 ⇒ lim k → + ∞ A k = 0 \begin{Vmatrix}A\end{Vmatrix}<1\Rightarrow\mathop{\text{lim}}\limits_{k\to +\infty}A^{k}=0 A <1k+limAk=0
    • 收敛矩阵 A : A k 收敛于零矩阵 收敛矩阵A:A^k收敛于零矩阵 收敛矩阵AAk收敛于零矩阵

Ex2    A = ( 0.2 0.5 0.1 0.1 0.5 0.3 0.2 0.4 0.2 ) , ∥ A ∥ ∞ = 0.9 ⇒ lim k → + ∞ A k = 0 \text{Ex2}\;A=\begin{pmatrix}0.2&0.5&0.1\\0.1&0.5&0.3\\0.2&0.4&0.2\end{pmatrix},\begin{Vmatrix}A\end{Vmatrix}_\infty=0.9\Rightarrow\mathop{\text{lim}}\limits_{k\to +\infty}A^{k}=0 Ex2A= 0.20.10.20.50.50.40.10.30.2 , A =0.9k+limAk=0

矩阵级数

定义

  • ∑ k = 1 ∞ A k = A ( 1 ) + A ( 2 ) + ⋯ + A ( k ) + … , A ( k ) 为矩阵级数一般项 \sum_{k=1}^\infty A^{k}=A^{(1)}+A^{(2)}+\dots+A^{(k)}+\dots,A^{(k)}为矩阵级数一般项 k=1Ak=A(1)+A(2)++A(k)+,A(k)为矩阵级数一般项

  • 矩阵级数敛散性 矩阵级数敛散性 矩阵级数敛散性

    • 矩阵级数部分和: S ( N ) = A ( 1 ) + A ( 2 ) + ⋯ + A ( N ) 矩阵级数部分和:S^{(N)}=A^{(1)}+A^{(2)}+\dots+A^{(N)} 矩阵级数部分和:S(N)=A(1)+A(2)++A(N)
    • 矩阵级数收敛: lim ⁡ N → ∞ S ( N ) = S 存在 矩阵级数收敛:\mathop{\lim}\limits_{N\to\infty}S^{(N)}=S存在 矩阵级数收敛:NlimS(N)=S存在
  • A k = ( a 11 ( k ) … a 1 n ( k ) ⋮ ⋱ ⋮ a m 1 ( k ) … a m n ( k ) )    S ( N ) = ( ∑ k = 1 N a 11 ( k ) … ∑ k = 1 N a 1 n ( k ) ⋮ ⋱ ⋮ ∑ k = 1 N a m 1 ( k ) … ∑ k = 1 N a m n ( k ) )    A^{k}= \begin{pmatrix} a_{11}^{(k)}&\dots&a_{1n}^{(k)}\\ \vdots&\ddots&\vdots\\ a_{m1}^{(k)}&\dots&a_{mn}^{(k)} \end{pmatrix} \; S^{(N)}= \begin{pmatrix} \sum_{k=1}^Na_{11}^{(k)}&\dots&\sum_{k=1}^Na_{1n}^{(k)}\\ \vdots&\ddots&\vdots\\ \sum_{k=1}^Na_{m1}^{(k)}&\dots&\sum_{k=1}^Na_{mn}^{(k)} \end{pmatrix} \; Ak= a11(k)am1(k)a1n(k)amn(k) S(N)= k=1Na11(k)k=1Nam1(k)k=1Na1n(k)k=1Namn(k)

性质

  • ∑ k = 1 ∞ A ( k ) 收敛 ⇔ m n 个数项级数 ∑ k = 1 ∞ a i j ( k ) 收敛 \sum_{k=1}^{\infty}A^{(k)}收敛\Leftrightarrow mn个数项级数\sum_{k=1}^{\infty}a_{ij}^{(k)}收敛 k=1A(k)收敛mn个数项级数k=1aij(k)收敛

  • ∑ k = 1 ∞ A ( k ) 收敛 ⇒ lim ⁡ k → + ∞ A ( k ) = 0 \sum_{k=1}^{\infty}A^{(k)}收敛\Rightarrow \mathop{\lim}\limits_{k\to+\infty}A^{(k)}=0 k=1A(k)收敛k+limA(k)=0

  • ∑ k = 1 ∞ A ( k ) = S 1 , ∑ k = 1 ∞ B ( k ) = S 2 , 则 ∑ k = 1 ∞ A ( k ) ± B ( k ) = S 1 ± S 2 \sum_{k=1}^{\infty}A^{(k)}=S_1,\sum_{k=1}^{\infty}B^{(k)}=S_2,则\sum_{k=1}^{\infty}A^{(k)}\pm B^{(k)}=S_1 \pm S_2 k=1A(k)=S1,k=1B(k)=S2,k=1A(k)±B(k)=S1±S2

  • ∑ k = 1 ∞ A ( k ) = S , μ ∈ C , 则 ∑ k = 1 ∞ μ A ( k ) = μ S \sum_{k=1}^{\infty}A^{(k)}=S,\mu\in\mathbb{C},则\sum_{k=1}^{\infty}\mu A^{(k)}=\mu S k=1A(k)=S,μC,k=1μA(k)=μS

绝对收敛

  • 若矩阵级数 ∑ k = 1 ∞ A ( k ) 绝对收敛:对应的 m × n 个数项级数 ∑ k = 1 ∞ a i j ( k ) 绝对收敛 若矩阵级数\sum_{k=1}^{\infty}A^{(k)}绝对收敛:对应的m\times n个数项级数\sum_{k=1}^{\infty}a_{ij}^{(k)}绝对收敛 若矩阵级数k=1A(k)绝对收敛:对应的m×n个数项级数k=1aij(k)绝对收敛

  • 定理: ∑ k = 1 ∞ A ( k ) 绝对收敛 ⇔ 对 ∀ 范数 ∥ ⋅ ∥ , ∑ k = 1 ∞ ∥ A ( k ) ∥ 收敛 定理:\sum_{k=1}^{\infty}A^{(k)}绝对收敛\Leftrightarrow对\forall范数\begin{Vmatrix}\cdot\end{Vmatrix},\sum_{k=1}^{\infty}\begin{Vmatrix}A^{(k)}\end{Vmatrix}收敛 定理:k=1A(k)绝对收敛范数 ,k=1 A(k) 收敛

矩阵幂级数

  • ∑ k = 0 ∞ c k A k = c 0 I + c 1 A + c 2 A 2 + ⋯ + c k A k + … \sum_{k=0}^\infty c_kA^k=c_0I+c_1A+c_2A^2+\dots+c_kA^k+\dots k=0ckAk=c0I+c1A+c2A2++ckAk+

  • 定理:正项级数 ∣ c 0 ∣ ∥ I ∥ + ∑ k = 1 ∞ ∣ c k ∣ ∥ A ∥ k 收敛,则 ∑ k = 0 ∞ c k A k 绝对收敛 定理:正项级数|c_0|\begin{Vmatrix}I\end{Vmatrix}+\sum_{k=1}^\infty|c_k|\begin{Vmatrix}A\end{Vmatrix}^k收敛,则\sum_{k=0}^\infty c_kA^k绝对收敛 定理:正项级数c0 I +k=1ck A k收敛,则k=0ckAk绝对收敛

    • 若矩阵 A 在某一种范数 ∥ A ∥ 在纯量幂级数 ∑ k = 0 ∞ c k z k 的收敛圆内,则矩阵 ∑ k = 0 ∞ c k A k 收敛 若矩阵A在某一种范数\begin{Vmatrix}A\end{Vmatrix}在纯量幂级数\sum_{k=0}^\infty c_kz^k的收敛圆内,则矩阵\sum_{k=0}^\infty c_kA^k收敛 若矩阵A在某一种范数 A 在纯量幂级数k=0ckzk的收敛圆内,则矩阵k=0ckAk收敛

Ex3    A = ( 0.2 0.5 0.1 0.1 0.5 0.3 0.2 0.4 0.2 ) , 则 I + A + A 2 + … 绝对收敛 \text{Ex3}\;A=\begin{pmatrix}0.2&0.5&0.1\\0.1&0.5&0.3\\0.2&0.4&0.2\end{pmatrix},则I+A+A^2+\dots绝对收敛 Ex3A= 0.20.10.20.50.50.40.10.30.2 ,I+A+A2+绝对收敛

  • 定理 定理 定理

    • 设 A ( k ) ∈ C n × n , 如果 A 的谱半径 ρ ( A ) 的值在纯量幂级数 ∑ k = 0 ∞ c k z k 的收敛圆内,则 ∑ k = 0 ∞ c k A k 绝对收敛 设A^{(k)}\in\mathbb{C}^{n\times n},如果A的谱半径\rho(A)的值在纯量幂级数\sum_{k=0}^\infty c_kz^k的收敛圆内,则\sum_{k=0}^\infty c_kA^k绝对收敛 A(k)Cn×n,如果A的谱半径ρ(A)的值在纯量幂级数k=0ckzk的收敛圆内,则k=0ckAk绝对收敛

    • 如果 A 的特征值中有一个在 ∑ k = 0 ∞ c k z k 收敛圆外,则 ∑ k = 0 ∞ c k A k 发散 如果A的特征值中有一个在\sum_{k=0}^\infty c_kz^k收敛圆外,则\sum_{k=0}^\infty c_kA^k发散 如果A的特征值中有一个在k=0ckzk收敛圆外,则k=0ckAk发散

    • 定理条件要求 ρ ( A ) < R 定理条件要求\rho(A)<R 定理条件要求ρ(A)<R

      • R = 1 ρ , ρ = lim ⁡ k → ∞ ∣ c k + 1 ∣ ∣ c k ∣ R=\frac{1}{\rho},\rho=\mathop{\lim}\limits_{k \to \infty}\frac{|c_{k+1}|}{|c_k|} R=ρ1,ρ=klimckck+1
  • 定理: 矩阵幂级数 ∑ k = 0 ∞ A k = I + A + A 2 + ⋯ + A k + … 绝对收敛 ⇔ ρ ( A ) < 1 , 且 I + A + A 2 + ⋯ + A k + ⋯ = ( I − A ) − 1 定理: \begin{align} & 矩阵幂级数\sum_{k=0}^\infty A^k=I+A+A^2+\dots+A^k+\dots绝对收敛\nonumber\\ & \Leftrightarrow\rho(A)<1,且I+A+A^2+\dots+A^k+\dots=(I-A)^{-1}\nonumber \end{align} 定理:矩阵幂级数k=0Ak=I+A+A2++Ak+绝对收敛ρ(A)<1,I+A+A2++Ak+=(IA)1

Ex4    设 A = ( 0.1 0.7 0.3 0.6 ) , 求 ∑ k = 0 ∞ A k \text{Ex4}\;设A=\begin{pmatrix}0.1&0.7\\0.3&0.6\end{pmatrix},求\sum_{k=0}^\infty A^k Ex4A=(0.10.30.70.6),k=0Ak

  • ∣ λ I − A ∣ = ∣ λ − 1 − 0.7 − 0.3 λ − 0.6 ∣ = λ 2 − 0.7 λ − 0.15 = 0 ⇒ λ = 0.7 ± 1.09 2 ⇒ ρ ( A ) = 0.7 + 1.09 2 < 1 ⇒ ∑ k = 0 ∞ A k 绝对收敛 则 ∑ k = 0 ∞ A k = ( 1 − A ) − 1 = 1 0.15 ( 0.4 0.7 0.3 0.9 ) \begin{align} & |\lambda I-A|=\begin{vmatrix}\lambda-1&-0.7\\-0.3&\lambda-0.6\end{vmatrix}=\lambda^2-0.7\lambda-0.15=0\nonumber\\ & \Rightarrow \lambda=\frac{0.7\pm \sqrt{1.09}}{2}\Rightarrow\rho(A)=\frac{0.7+\sqrt{1.09}}{2}<1\Rightarrow\sum_{k=0}^\infty A^k绝对收敛\nonumber\\ & 则\sum_{k=0}^\infty A^k=(1-A)^{-1}=\frac{1}{0.15}\begin{pmatrix}0.4&0.7\\0.3&0.9\end{pmatrix}\nonumber \end{align} λIA= λ10.30.7λ0.6 =λ20.7λ0.15=0λ=20.7±1.09 ρ(A)=20.7+1.09 <1k=0Ak绝对收敛k=0Ak=(1A)1=0.151(0.40.30.70.9)

  • 矩阵幂级数 ∑ k = 0 ∞ c k A k 的敛散性对应纯量幂级数 ∑ k = 0 ∞ c k z k 的敛散性 矩阵幂级数\sum_{k=0}^\infty c_kA^k的敛散性对应纯量幂级数\sum_{k=0}^\infty c_kz^k的敛散性 矩阵幂级数k=0ckAk的敛散性对应纯量幂级数k=0ckzk的敛散性

  • 纯量幂级数的和函数 S ( z ) = ∑ k = 0 ∞ c k z k 在其收敛域 ( − R , R ) 内连续、可积、可微 纯量幂级数的和函数S(z)=\sum_{k=0}^\infty c_kz^k在其收敛域(-R,R)内连续、可积、可微 纯量幂级数的和函数S(z)=k=0ckzk在其收敛域(R,R)内连续、可积、可微

    对应矩阵幂级数的和函数 f ( A ) = ∑ k = 0 ∞ c k A k , ρ ( A ) < R 对应矩阵幂级数的和函数f(A)=\sum_{k=0}^\infty c_kA^k,\rho(A)<R 对应矩阵幂级数的和函数f(A)=k=0ckAk,ρ(A)<R

  • 在 ρ ( A < R 时,利用前 k + 1 项和求,和函数的近似值: 在\rho(A<R时,利用前k+1项和求,和函数的近似值: ρ(A<R时,利用前k+1项和求,和函数的近似值:

    f ( A ) = ∑ k = 0 ∞ c k A k ≈ c 0 I + c 1 A + c 2 A 2 + ⋯ + c k A k 误差较小 f(A)=\sum_{k=0}^\infty c_kA^k\approx c_0I+c_1A+c_2A^2+\dots+c_kA^k误差较小 f(A)=k=0ckAkc0I+c1A+c2A2++ckAk误差较小

  • 定理: ∥ A ∥ < 1 , ∀ 非负整数 k ,有 ∥ ( 1 − A ) − 1 − ( I + A + A 2 + ⋯ + A k ) ∥ < ∥ A ∥ k + 1 1 − ∥ A ∥ 定理:\begin{Vmatrix}A\end{Vmatrix}<1,\forall非负整数k,有\begin{Vmatrix}(1-A)^{-1}-(I+A+A^2+\dots+A^k)\end{Vmatrix}<\frac{\begin{Vmatrix}A\end{Vmatrix}^{k+1}}{1-\begin{Vmatrix}A\end{Vmatrix}} 定理: A <1,非负整数k,有 (1A)1(I+A+A2++Ak) <1AAk+1

Ex5    设 A = ( − 1 1 1 − 5 21 17 6 − 26 − 21 ) , 讨论 ∑ k = 0 ∞ ( − 1 ) k 1 3 k + 1 k 2 A k 的敛散性 \text{Ex5}\;设A=\begin{pmatrix}-1&1&1\\-5&21&17\\6&-26&-21\end{pmatrix},讨论\sum_{k=0}^\infty(-1)^k\frac{1}{3^{k+1}k^2}A^k的敛散性 Ex5A= 1561212611721 ,讨论k=0(1)k3k+1k21Ak的敛散性

  • 求收敛半径 R : c k = ( − 1 ) k 1 3 k + 1 k 2 ⇒ ρ = lim ⁡ k → ∞ ∣ c k + 1 ∣ ∣ c k ∣ = 1 3 ⇒ R = 1 ρ = 3 求谱半径 ρ ( A ) : ∣ λ I − A ∣ = ∣ λ + 1 − 1 − 1 5 λ − 21 − 17 − 6 26 λ + 21 ∣ = λ 2 ( λ + 1 ) = 0 ⇒ ρ ( A ) = 1 判断敛散性 : ρ ( A ) = 1 < R , 收敛 \begin{align} & 求收敛半径R:c_k=(-1)^k\frac{1}{3^{k+1}k^2}\Rightarrow\rho=\mathop{\lim}\limits_{k\to\infty}\frac{|c_{k+1}|}{|c_k|}=\frac{1}{3}\Rightarrow R=\frac{1}{\rho}=3\nonumber\\ & 求谱半径\rho(A):|\lambda I-A|= \begin{vmatrix} \lambda+1&-1&-1\\ 5&\lambda-21&-17\\ -6&26&\lambda+21 \end{vmatrix} =\lambda^2(\lambda+1)=0\Rightarrow \rho(A)=1\nonumber\\ & 判断敛散性:\rho(A)=1<R,收敛\nonumber \end{align} 求收敛半径Rck=(1)k3k+1k21ρ=klimckck+1=31R=ρ1=3求谱半径ρ(A)λIA= λ+1561λ2126117λ+21 =λ2(λ+1)=0ρ(A)=1判断敛散性:ρ(A)=1<R,收敛

Ex6    设 A = ( 0 a a a 0 a a a 0 ) , 求 a 为何值时, ∑ k = 0 ∞ ( − 1 ) k − 1 1 2 k k A k 收敛 \text{Ex6}\;设A=\begin{pmatrix}0&a&a\\a&0&a\\a&a&0\end{pmatrix},求a为何值时,\sum_{k=0}^\infty(-1)^{k-1}\frac{1}{2^kk}A^k收敛 Ex6A= 0aaa0aaa0 ,a为何值时,k=0(1)k12kk1Ak收敛
c k = ( − 1 ) k − 1 1 2 k k ⇒ R = 2 … \begin{align} & c_k=(-1)^{k-1}\frac{1}{2^kk}\Rightarrow R=2\nonumber\\ & \dots\nonumber \end{align} ck=(1)k12kk1R=2

矩阵函数

常见矩阵函数

  • 一般形式: ∀ A ∈ C n × n → f ( A ) = ∑ k = 0 ∞ c k A k 一般形式:\forall A\in\mathbb{C}^{n \times n}\to f(A)=\sum_{k=0}^\infty c_kA^k 一般形式:ACn×nf(A)=k=0ckAk

    • 纯量幂级数 f ( z ) = ∑ k = 0 ∞ c k z k ⇒ 矩阵幂级数 f ( A ) = ∑ k = 0 ∞ c k A k 纯量幂级数f(z)=\sum_{k=0}^\infty c_kz^k\Rightarrow矩阵幂级数f(A)=\sum_{k=0}^\infty c_kA^k 纯量幂级数f(z)=k=0ckzk矩阵幂级数f(A)=k=0ckAk
    • 矩阵指数函数: e A = ∑ k = 0 ∞ A k k ! 矩阵指数函数:e^A=\sum_{k=0}^\infty\frac{A^k}{k!} 矩阵指数函数:eA=k=0k!Ak
    • 矩阵三角函数: sin ⁡ A = ∑ k = 0 ∞ ( − 1 ) k A 2 k + 1 ( 2 k + 1 ) ! , cos ⁡ A = ∑ k = 0 ∞ ( − 1 ) k A 2 k ( 2 k ) ! 矩阵三角函数:\sin A=\sum_{k=0}^\infty(-1)^k\frac{A^{2k+1}}{(2k+1)!},\cos A=\sum_{k=0}^\infty(-1)^k\frac{A^{2k}}{(2k)!} 矩阵三角函数:sinA=k=0(1)k(2k+1)!A2k+1cosA=k=0(1)k(2k)!A2k
  • 定理: A B = B A → e A ⋅ e B = e B ⋅ e A = e A + B 定理:AB=BA\to e^A\cdot e^B=e^B\cdot e^A=e^{A+B} 定理:AB=BAeAeB=eBeA=eA+B

    • ∀ A ∈ C n × n , e A 总可逆,且 ( e A ) − 1 = e − A \forall A\in\mathbb{C}^{n \times n},e^A总可逆,且(e^A)^{-1}=e^{-A} ACn×n,eA总可逆,且(eA)1=eA
      ∵ e A ⋅ e − A = e A + ( − A ) = e 0 , e A = ∑ k = 0 ∞ A k k ! ⇒ e 0 = ∑ k = 0 ∞ 0 k k ! = I ∴ e A ⋅ e − A = I ⇒ ( e A ) − 1 = e − A \begin{align} &\because e^A\cdot e^{-A}=e^{A+(-A)}=e^0,e^A=\sum_{k=0}^\infty\frac{A^k}{k!}\Rightarrow e^0=\sum_{k=0}^\infty\frac{0^k}{k!}=I\nonumber\\ & \therefore e^A\cdot e^{-A}=I\Rightarrow (e^A)^{-1}=e^{-A}\nonumber \end{align} eAeA=eA+(A)=e0,eA=k=0k!Ake0=k=0k!0k=IeAeA=I(eA)1=eA

    • ∀ A ∈ C n × n , 有 ( e A ) m = e m A \forall A\in \mathbb{C}^{n\times n},有(e^A)^m=e^{mA} ACn×n,(eA)m=emA

矩阵函数值的计算

凯莱 − 哈密顿定理 凯莱-哈密顿定理 凯莱哈密顿定理

利用相似矩阵 利用相似矩阵 利用相似矩阵

  • A 可对角化: f ( A ) = C diag ( f ( λ 1 ) f ( λ 2 ) … f ( λ n ) ) C − 1 A可对角化:f(A)=C\text{diag}\begin{pmatrix}f(\lambda_1)&f(\lambda_2)&\dots&f(\lambda_n)\end{pmatrix}C^{-1} A可对角化:f(A)=Cdiag(f(λ1)f(λ2)f(λn))C1

Ex7    设 A = ( 3 2 1 2 ) , 求 A 4 + 2 A 3 + A 及 e A , sin ⁡ A \text{Ex7}\;设A=\begin{pmatrix}3&2\\1&2\end{pmatrix},求A^4+2A^3+A及e^A,\sin A Ex7A=(3122),A4+2A3+AeA,sinA

  • ( 1 ) 求 A 的特征值、特征向量 ∣ λ I − A ∣ = ( λ − 3 − 2 − 1 λ − 2 ) = λ 2 − 5 λ + 4 ⇒ λ 1 = 1 , λ 2 = 4 分别对应特征向量 ( − 1 1 ) T , ( 2 1 ) T ( 2 ) 确定相似变换和对角阵 C = ( − 1 2 1 1 ) , C − 1 = ( − 1 3 2 3 1 3 1 3 ) ⇒ C − 1 A C = Λ = ( 1 0 0 4 ) ⇒ A = C ( 1 0 0 4 ) C − 1 ( 3 ) 计算函数值 f ( A ) = C diag ( f ( λ 1 ) f ( λ 2 ) ) C − 1 A 4 + 2 A 3 + A = ( − 1 2 1 1 ) ( 4 0 0 388 ) ( − 1 3 2 3 1 3 1 3 ) = ( 260 256 128 132 ) e A = ( − 1 2 1 1 ) ( e 1 0 0 e 4 ) ( − 1 3 2 3 1 3 1 3 ) = 1 3 ( e 1 + 2 e 4 − 2 e 1 + e 4 − e 1 + e 4 2 e 1 + e 4 ) sin ⁡ A = ( − 1 2 1 1 ) ( sin ⁡ 1 0 0 sin ⁡ 4 ) ( − 1 3 2 3 1 3 1 3 ) = 1 3 ( sin ⁡ 1 + 2 sin ⁡ 4 − 2 sin ⁡ 1 + sin ⁡ 4 − sin ⁡ 1 + sin ⁡ 4 2 sin ⁡ 1 + sin ⁡ 4 ) \begin{align} & (1)求A的特征值、特征向量\nonumber\\ & |\lambda I-A|=\begin{pmatrix}\lambda-3&-2\\-1&\lambda-2\end{pmatrix}=\lambda^2-5\lambda+4\Rightarrow\lambda_1=1,\lambda_2=4\nonumber\\ & 分别对应特征向量\nonumber\begin{pmatrix}-1&1\end{pmatrix}^T,\begin{pmatrix}2&1\end{pmatrix}^T\\ & (2)确定相似变换和对角阵\nonumber\\ & C=\begin{pmatrix}-1&2\\1&1\end{pmatrix},C^{-1}=\begin{pmatrix}-\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{pmatrix}\Rightarrow C^{-1}AC=\Lambda=\begin{pmatrix}1&0\\0&4\end{pmatrix}\nonumber\\ &\Rightarrow A=C\begin{pmatrix}1&0\\0&4\end{pmatrix}C^{-1}\nonumber\\ & (3)计算函数值\nonumber\\ & f(A)=C\text{diag}\begin{pmatrix}f(\lambda_1)&f(\lambda_2)\end{pmatrix}C^{-1}\nonumber\\ & A^4+2A^3+A=\begin{pmatrix}-1&2\\1&1\end{pmatrix}\begin{pmatrix}4&0\\0&388\end{pmatrix}\begin{pmatrix}-\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{pmatrix}=\begin{pmatrix}260&256\\128&132\end{pmatrix}\nonumber\\ & e^A=\begin{pmatrix}-1&2\\1&1\end{pmatrix}\begin{pmatrix}e^1&0\\0&e^4\end{pmatrix}\begin{pmatrix}-\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{pmatrix}=\frac{1}{3}\begin{pmatrix}e^1+2e^4&-2e^1+e^4\\-e^1+e^4&2e^1+e^4\end{pmatrix}\nonumber\\ & \sin A=\begin{pmatrix}-1&2\\1&1\end{pmatrix}\begin{pmatrix}\sin 1&0\\0&\sin 4\end{pmatrix}\begin{pmatrix}-\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{pmatrix}=\frac{1}{3}\begin{pmatrix}\sin 1+2 \sin 4&-2\sin 1+\sin 4\\-\sin 1+\sin 4&2\sin 1+\sin 4\end{pmatrix}\nonumber \end{align} (1)A的特征值、特征向量λIA=(λ312λ2)=λ25λ+4λ1=1,λ2=4分别对应特征向量(11)T,(21)T(2)确定相似变换和对角阵C=(1121),C1=(31313231)C1AC=Λ=(1004)A=C(1004)C1(3)计算函数值f(A)=Cdiag(f(λ1)f(λ2))C1A4+2A3+A=(1121)(400388)(31313231)=(260128256132)eA=(1121)(e100e4)(31313231)=31(e1+2e4e1+e42e1+e42e1+e4)sinA=(1121)(sin100sin4)(31313231)=31(sin1+2sin4sin1+sin42sin1+sin42sin1+sin4)

  • A 不可对角化: A ∼ J , 即 ∃ C , C − 1 A C = J ⇒ A = C J C − 1 A不可对角化:A\sim J,即\exist C,C^{-1}AC=J\Rightarrow A=CJC^{-1} A不可对角化:AJ,C,C1AC=JA=CJC1

    定义矩阵函数 f ( A ) = C f ( J ) C − 1 = C ( f ( J 1 ( λ 1 ) ) f ( J 2 ( λ 2 ) ⋱ f ( J r ( λ r ) ) ) C − 1 ( ∗ ) 定义矩阵函数f(A)=Cf(J)C^{-1}=C\begin{pmatrix}f(J_1(\lambda_1))\\&f(J_2(\lambda_2)\\&&\ddots\\&&&f(J_r(\lambda_r))\end{pmatrix}C^{-1}(*) 定义矩阵函数f(A)=Cf(J)C1=C f(J1(λ1))f(J2(λ2)f(Jr(λr)) C1()

    其中 f i ( J i ( λ i ) ) = ( f ( λ i ) f ′ ( λ i ) 1 2 f ′ ′ ( λ i ) … 1 ( n i − 1 ) ! f ( n i − 1 ) ( λ i ) f ( λ i ) f ′ ( λ i ) … 1 ( n i − 1 ) ! f ( n i − 1 ) ( λ i ) ⋱ ⋱ ⋮ ⋱ f ′ ( λ i ) f ( λ i ) ) , ( ∗ ) 为 f ( A ) 的若当标准型 其中f_i(J_i(\lambda_i))=\begin{pmatrix}f(\lambda_i)&f'(\lambda_i)&\frac{1}{2}f''(\lambda_i)&\dots&\frac{1}{(n_i-1)!}f^{(n_i-1)}(\lambda_i)\\&f(\lambda_i)&f'(\lambda_i)&\dots&\frac{1}{(n_i-1)!}f^{(n_i-1)}(\lambda_i)\\&&\ddots&\ddots&\vdots\\&&&\ddots&f'(\lambda_i)\\&&&&f(\lambda_i)\end{pmatrix},(*)为f(A)的若当标准型 其中fi(Ji(λi))= f(λi)f(λi)f(λi)21f′′(λi)f(λi)(ni1)!1f(ni1)(λi)(ni1)!1f(ni1)(λi)f(λi)f(λi) ,()f(A)的若当标准型

    • 对于三阶方阵 A ,有 f ( A ) = C f ( J ) C − 1 , J = ( J 1 ⋱ J r ) 对于三阶方阵A,有f(A)=Cf(J)C^{-1},J=\begin{pmatrix}J_1\\&\ddots\\&&J_r\end{pmatrix} 对于三阶方阵A,有f(A)=Cf(J)C1,J= J1Jr
  • J i = ( λ i ) , r = 3 ⇒ J = Λ = ( λ 1 λ 2 λ 3 ) ⇒ f ( A ) = C f ( Λ ) C − 1 = C diag ( f ( λ 1 ) f ( λ 2 ) … f ( λ n ) ) C − 1 J 1 = ( λ 1 ) , J 2 = ( λ 2 1 0 λ 2 ) ⇒ J = ( J 1 0 0 J 2 ) ⇒ f ( J 1 ) = f ( λ 1 ) , f ( J 2 ) = ( f ( λ 2 ) f ′ ( λ 2 ) 0 f ( λ 2 ) ) J 1 = ( λ 1 1 0 0 λ 2 1 0 0 λ 3 ) ⇒ f ( J 1 ) = ( f ( λ 1 ) f ′ ( λ 1 ) 1 2 f ′ ′ ( λ 1 ) f ( λ 1 ) f ′ ( λ 1 ) f ( λ 1 ) ) \begin{align} &J_i=(\lambda_i),r=3\Rightarrow J=\Lambda=\begin{pmatrix}\lambda_1\\&\lambda_2\\&&\lambda_3\end{pmatrix}\nonumber\\ &\Rightarrow f(A)=Cf(\Lambda)C^{-1}=C\text{diag}\begin{pmatrix}f(\lambda_1)&f(\lambda_2)&\dots&f(\lambda_n)\end{pmatrix}C^{-1}\nonumber\\ &J_1=(\lambda_1),J_2=\begin{pmatrix}\lambda_2&1\\0&\lambda_2\end{pmatrix}\Rightarrow J=\begin{pmatrix}J_1&0\\0&J_2\end{pmatrix}\nonumber\\ &\Rightarrow f(J_1)=f(\lambda_1),f(J_2)=\begin{pmatrix}f(\lambda_2)&f'(\lambda_2)\\0&f(\lambda_2)\end{pmatrix}\nonumber\\ & J_1=\begin{pmatrix}\lambda_1&1&0\\0&\lambda_2&1\\0&0&\lambda_3\end{pmatrix}\Rightarrow f(J_1)=\begin{pmatrix}f(\lambda_1)&f'(\lambda_1)&\frac{1}{2}f''(\lambda_1)\\&f(\lambda_1)&f'(\lambda_1)\\&&f(\lambda_1)\end{pmatrix}\nonumber \end{align} Ji=(λi),r=3J=Λ= λ1λ2λ3 f(A)=Cf(Λ)C1=Cdiag(f(λ1)f(λ2)f(λn))C1J1=(λ1),J2=(λ201λ2)J=(J100J2)f(J1)=f(λ1),f(J2)=(f(λ2)0f(λ2)f(λ2))J1= λ1001λ2001λ3 f(J1)= f(λ1)f(λ1)f(λ1)21f′′(λ1)f(λ1)f(λ1)

Ex8    设 A = ( 3 1 − 1 1 2 − 1 2 1 0 ) , 求 e A t 及 1 A \text{Ex8}\;设A=\begin{pmatrix}3&1&-1\\1&2&-1\\2&1&0\end{pmatrix},求e^{At}及\frac{1}{A} Ex8A= 312121110 ,eAtA1

  • ∣ λ I − A ∣ = ( λ − 1 ) ( λ − 2 ) 2 ⇒ λ 1 = 1 , λ 2 , 3 = 2 令相似变换 P = ( x 1 ⃗ x 2 ⃗ x 3 ⃗ ) ,则 A P = P J ,得 A ( x 1 ⃗ x 2 ⃗ x 3 ⃗ ) = ( x 1 ⃗ x 2 ⃗ x 3 ⃗ ) ( 1 2 1 2 ) λ 1 = 1 ⇒ x 1 ⃗ = ( 0 1 1 ) T λ 2 = 2 ⇒ x 2 ⃗ = ( 1 0 1 ) T λ 3 = 2 ⇒ 求解 ( 2 I − A ) x 3 ⃗ = − x 2 ⃗ , 得广义特征向量 x 3 ⃗ = ( 1 1 1 ) T P = ( 0 1 1 1 0 1 1 1 1 ) ⇒ P − 1 = ( − 1 0 1 0 − 1 1 1 1 − 1 ) ⇒ A = P J P − 1 = P ( 1 2 1 2 ) P − 1 f ( A ) = P ( f ( J 1 ( λ 1 ) ) f ( J 2 ( λ 2 ) ) ) P − 1 求 e A t : f ( J 1 ) = f ( 1 ) = e t , f ( J 2 ) = ( e 2 t t e 2 t e 2 t ) ⇒ e A t = P ( e t e 2 t t e 2 t e 2 t ) P − 1 求 1 A : f ( J 1 ) = f ( 1 ) = 1 , f ( λ 2 ) = 1 λ 2 , f ′ ( λ 2 ) = − 1 λ 2 2 ⇒ f ( J 2 ) = ( 1 2 − 1 4 0 1 2 ) … \begin{align} & |\lambda I-A|=(\lambda-1)(\lambda-2)^2\Rightarrow\lambda_1=1,\lambda_{2,3}=2\nonumber\\ & 令相似变换P=\begin{pmatrix}\vec{x_1}&\vec{x_2}&\vec{x_3}\end{pmatrix},则AP=PJ,得A\begin{pmatrix}\vec{x_1}&\vec{x_2}&\vec{x_3}\end{pmatrix}=\begin{pmatrix}\vec{x_1}&\vec{x_2}&\vec{x_3}\end{pmatrix}\begin{pmatrix}1\\&2&1\\&&2\end{pmatrix}\nonumber\\ & \lambda_1=1\Rightarrow \vec{x_1}=\begin{pmatrix}0&1&1\end{pmatrix}^T\nonumber\\ & \lambda_2=2\Rightarrow \vec{x_2}=\begin{pmatrix}1&0&1\end{pmatrix}^T\nonumber\\ & \lambda_3=2\Rightarrow求解(2I-A)\vec{x_3} =-\vec{x_2},得广义特征向量\vec{x_3}=\begin{pmatrix}1&1&1\end{pmatrix}^T\nonumber\\ &P=\begin{pmatrix}0&1&1\\1&0&1\\1&1&1\end{pmatrix}\Rightarrow P^{-1}=\begin{pmatrix}-1&0&1\\0&-1&1\\1&1&-1\end{pmatrix}\Rightarrow A=PJP^{-1}=P\begin{pmatrix}1\\&2&1\\&&2\end{pmatrix}P^{-1}\nonumber\\ & f(A)=P\begin{pmatrix}f(J_1(\lambda_1))\\&f(J_2(\lambda_2))\end{pmatrix}P^{-1}\nonumber\\ & 求e^{At}:f(J_1)=f(1)=e^t,f(J_2)=\begin{pmatrix}e^{2t}&te^{2t}\\&e^{2t}\end{pmatrix}\Rightarrow e^{At}=P\begin{pmatrix}e^{t}\\&e^{2t}&te^{2t}\\&&e^{2t}\end{pmatrix}P^{-1} \nonumber \\ &求\frac{1}{A}:f(J_1)=f(1)=1,f(\lambda_2)=\frac{1}{\lambda_2},f'(\lambda_2)=-\frac{1}{\lambda_2^2}\Rightarrow f(J_2)=\begin{pmatrix}\frac{1}{2}& -\frac{1}{4}\\0&\frac{1}{2}\end{pmatrix}\nonumber\\ & \dots\nonumber \end{align} λIA=(λ1)(λ2)2λ1=1,λ2,3=2令相似变换P=(x1 x2 x3 ),则AP=PJ,得A(x1 x2 x3 )=(x1 x2 x3 ) 1212 λ1=1x1 =(011)Tλ2=2x2 =(101)Tλ3=2求解(2IA)x3 =x2 ,得广义特征向量x3 =(111)TP= 011101111 P1= 101011111 A=PJP1=P 1212 P1f(A)=P(f(J1(λ1))f(J2(λ2)))P1eAt:f(J1)=f(1)=et,f(J2)=(e2tte2te2t)eAt=P ete2tte2te2t P1A1:f(J1)=f(1)=1,f(λ2)=λ21,f(λ2)=λ221f(J2)=(2104121)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值