- 首先lr是一个分类模型,讨论二分类情况下,在这个基础上我们假设样本服从伯努利分布(0-1分布)
- 做了假设分布后下一步就是求分布参数,这个过程一般采用极大似然估计MLE(Maximum Likelihood Estimation),具体方法是求该假设分布在训练样本上的联合概率(样本带入连乘),然后求其关于θ的最大值,为了方便计算所以一般取-log,单调性保持不变,所以就有了logloss:L(Y,P(Y|X))=−logP(Y|X)
原文见 http://blog.csdn.net/acdreamers/article/details/27365941
Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素之间关系的一种多
变量分析方法。通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中根据病人的一些症状来判断它是
否患有某种病。
在讲解Logistic回归理论之前,我们先从LR分类器说起。LR分类器,即Logistic Regression Classifier。
在分类情形下,经过学习后的LR分类器是一组权值,当测试样本的数据输入时,这组权值与测试数据按
照线性加和得到
这里是每个样本的个特征。
之后按照sigmoid函数的形式求出