在leetcode上做算法题目的时候为什么会超时?计算机究竟1s可以执行多少次操作?
超时是怎么回事
大家在leetcode上练习算法的时候应该都遇到过一种错误是“超时”。也就是说程序运行的时间超过了规定的时间,一般OJ(online judge)的超时时间就是1s,也就是用例数据输入后最多要1s内得到结果,下文为了方便讲解,暂定超时时间就是1s
如果写出了一个O(n)的算法 ,其实可以估算出来n是多大的时候算法的执行时间就会超过1s了。如果n的规模已经足够让O(n)的算法运行时间超过了1s,就应该考虑log(n)的解法了。
从硬件配置看计算机的性能
计算机的运算速度主要看CPU的配置,打个比方,有CPU配置:2.7 GHz Intel Core i5 。也就是 2.7 GHz i5处理器,1Hz = 1/s,1Hz 是CPU的一次脉冲(可以理解为一次改变状态,也叫时钟周期),称之为赫兹。
1GHz(兆赫)= 1000MHz(兆赫)
1MHz(兆赫)= 1百万赫兹
所以 1GHz = 10亿Hz,表示CPU可以一秒脉冲10亿次(有10亿个时钟周期),这里不要简单理解一个时钟周期就是一次CPU运算。
例如1 + 2 = 3,cpu要执行四次才能完整这个操作,步骤一:把1放入寄存机,步骤二:把2放入寄存器,步骤三:做加法,步骤四:保存3。而且计算机的cpu也不会只运行我们自己写的程序上,同时cpu也要执行计算机的各种进程任务等等,我们的程序仅仅是其中的一个进程而已。
测试实验
在写测试程序测1s内处理多大数量级数据的时候,有三点需要注意:
-
CPU执行每条指令所需的时间实际上并不相同,例如CPU执行加法和乘法操作的耗时实际上都是不一样的。
-
现在的大多计算机系统的内存管理都有缓存技术,所以频繁访问相同地址的数据和访问不相邻元素所需的时间也是不同的。
-
计算机同时运行多个程序,每个程序里还有不同的进程线程在抢占资源。
尽管有很多因素影响,但是还是可以对自己程序的运行时间有一个大体的评估。
以下以C++代码为例实现三个函数,时间复杂度分别是 O(n) , O(n^2), O(nlogn),使用加法运算来统一测试。
// O(n)
void function1(long long n) {
long long k = 0;
for (long long i = 0; i < n; i++) {
k++;
}
}
// O(n^2)
void function2(long long n) {
long long k = 0;
for (long long i = 0; i < n; i++) {
for (long j = 0; j < n; j++) {
k++;
}
}
}
// O(nlogn)
void function3(long long n) {
long long k = 0;
for (long long i = 0; i < n; i++) {
for (long long j = 1; j < n; j = j * 2) { // 注意这里j=1
k++;
}
}
}
先来看一下这 O(n)级别函数随着n的规模变化,耗时会产生多大的变化,运行的效果,如下图:

O(n)的算法,1s内大概计算机可以运行 5 * (108)次计算,可以推测一下O(n2) 的算法应该1s可以处理的数量级的规模是 5 * (10^8)开根号,实验数据如下。

O(n^2)的算法,1s内大概计算机可以运行 22500次计算,验证了刚刚的推测。再推测一下O(nlogn)的话, 1s可以处理的数据规模是什么呢?理论上应该是比 O(n)的计算量少一个数量级,看一下实验数据。

O(nlogn)的算法,1s内大概计算机可以运行 2 * (10^7)次计算,符合预期。
至于O(logn) 和O(n^3) 等等这些时间复杂度在1s内可以处理的多大的数据规模,大家可以自己写一写代码去测一下。
完整测试代码
#include <iostream>
#include <chrono>
#include <thread>
using namespace std;
using namespace chrono;
// O(n)
void function1(long long n) {
long long k = 0;
for (long long i = 0; i < n; i++) {
k++;
}
}
// O(n^2)
void function2(long long n) {
long long k = 0;
for (long long i = 0; i < n; i++) {
for (long j = 0; j < n; j++) {
k++;
}
}
}
// O(nlogn)
void function3(long long n) {
long long k = 0;
for (long long i = 0; i < n; i++) {
for (long long j = 1; j < n; j = j * 2) { // 注意这里j=1
k++;
}
}
}
int main() {
long long n; // 数据规模
while (1) {
cout << "输入n:";
cin >> n;
milliseconds start_time = duration_cast<milliseconds >(
system_clock::now().time_since_epoch()
);
function1(n);
// function2(n);
// function3(n);
milliseconds end_time = duration_cast<milliseconds >(
system_clock::now().time_since_epoch()
);
cout << "耗时:" << milliseconds(end_time).count() - milliseconds(start_time).count()
<<" ms"<< endl;
}
}
总结
本文详细分析了在leetcode上做题程序的超时,以及从硬件配置上大体知道CPU的执行速度,然后做一个实验来看看给出不同时间复杂度跑一秒钟,这个n究竟是多大。帮助大家对程序运行时间和数据规模有一个整体的认识。