如何用python的画几组数据量不同的boxplot(箱线图)

使用pandas里的dataframe数据结构存放待显示的数据。
dataframe和Series的知识不再讲解,可以看这个博文
如果希望显示的各个数据列表中,数据长度不一致,可以先用Series函数转换为Series数据,再存储到dataframe中,对应index的value值若不存在则为NaN
正常情况下,若各组数据长度一致,则dataframe长这样:
0 1
0 1 5
1 2 6
2 3 7
3 4 8
如果长度不一致,长这样:
0 1
0 1 5
1 2 6
2 3 7
3 NaN 8
后面直接用boxplot就可以
代码原型参考了这篇博客

# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd


def list_generator(mean, dis, number):  # 封装一下这个函数,用来后面生成数据
    return np.random.normal(mean, dis * dis, number)  # normal分布,输入的参数是均值、标准差以及生成的数量


# 我们生成四组数据用来做实验,数据量分别为70-100
list1 = list_generator(0.8531, 0.0956, 70)
list2 = list_generator(0.8631, 0.0656, 80)
list3 = list_generator(0.8731, 0.1056, 90)
list4 = list_generator(0.8831, 0.0756, 100)
s1 = pd.Series(np.array(list1))
s2 = pd.Series(np.array(list2))
s3 = pd.Series(np.array(list3))
s4 = pd.Series(np.array(list4))
# 把四个list导入到pandas的数据结构中,dataframe
data = pd.DataFrame({"1": s1, "2": s2, "3": s3, "4": s4})
data.boxplot()  # 这里,pandas自己有处理的过程,很方便哦。
plt.ylabel("ylabel")
plt.xlabel("xlabel")  # 我们设置横纵坐标的标题。
plt.show()
### 回答1: 是的,Python可以用多种统计工具进行三组数据的组间差异检验,并显示组间差异的显著性。以下是几种常用的方法: 1. 方差分析(ANOVA):可以用Python中的scipy.stats.f_oneway()函数实现。这个函数接受三个或更多组数据,并返回F值和p值,可以用来判断组间是否存在显著差异。 2. 非参数检验:适用于数据分布不满足正态分布的情况。可以用Python中的scipy.stats.kruskal()函数实现。这个函数接受三个或更多组数据,并返回H值和p值,可以用来判断组间是否存在显著差异。 3. 多重比较检验:用来判断哪些组之间存在显著差异。可以用Python中的statsmodels.stats.multicomp()模块实现。这个模块提供了多种多重比较检验的方法,例如Tukey HSD、Bonferroni、Holm等。 下面是一个示例代码,演示如何使用ANOVA和Tukey HSD进行三组数据的组间差异检验,并显示组间差异的显著性: ```python import pandas as pd from scipy.stats import f_oneway from statsmodels.stats.multicomp import pairwise_tukeyhsd # 三组数据 group1 = [3, 5, 6, 7, 3, 5, 8, 9] group2 = [2, 4, 5, 6, 2, 4, 7, 8] group3 = [1, 3, 4, 5, 1, 3, 6, 7] # 合并数据 data = pd.DataFrame({ 'group': ['group1'] * len(group1) + ['group2'] * len(group2) + ['group3'] * len(group3), 'value': group1 + group2 + group3 }) # 方差分析 fvalue, pvalue = f_oneway(group1, group2, group3) print('F值:', fvalue) print('p值:', pvalue) # Tukey HSD多重比较检验 tukey_results = pairwise_tukeyhsd(data['value'], data['group']) print(tukey_results) ``` 在上述示例中,我们将三组数据合并成一个DataFrame,并使用f_oneway()函数计算组间差异的显著性。然后使用pairwise_tukeyhsd()函数进行Tukey HSD多重比较检验,得到各组之间差异的显著性水平。 ### 回答2: Python是一种功能强大的编程语言,拥有众多高效的数据处理和分析库,例如numpy、pandas和scipy等。利用这些库,我们可以进行组间差异检验,并显示组间差异的显著性。 首先,通过pandas库,我们可以很方便地读取和处理数据。我们可以将这三组数据分别读取到不同的DataFrame中。 接下来,我们可以使用scipy库的statistical模块进行组间差异检验。这个模块中有多种方法可用于组间差异检验,如t检验、方差分析(ANOVA)等。 如果我们希望比较两组数据的均值是否有显著差异,可以使用t检验。我们可以使用ttest_ind函数进行独立样本t检验,或使用ttest_rel函数进行配对样本t检验。这些函数将返回包含t统计量和p值的结果。 如果我们希望比较三组及以上数据的均值是否有显著差异,可以使用方差分析(ANOVA)。我们可以使用f_oneway函数进行单因素方差分析,或使用多因素方差分析。 对于方差分析和独立样本t检验结果,我们可以使用p值来判断组间差异的显著性。如果p值小于显著性水平(通常为0.05),则说明组间差异显著。 最后,我们可以根据检验结果,使用可视化库如matplotlib或seaborn来绘制适当的图表,以便更直观地展示组间差异。 综上所述,Python可以进行三组数据的组间差异检验,并显示组间差异的显著性。我们可以利用pandas库读取和处理数据,利用scipy库进行统计分析,利用合适的方法和可视化工具来进行显著性判断和展示。 ### 回答3: 是的,Python可以进行三组数据的组间差异检验,并显示组间差异的显著性。Python中有许多用于数据分析和统计的库,如NumPy、SciPy和Statsmodels。 首先,可以使用NumPy库将数据加载到Python中,并将其分成三组。然后,可以使用SciPy库中的统计函数执行组间差异检验,例如方差分析(ANOVA)或Kruskal-Wallis检验,这取决于数据是否满足方差齐性的假设。 执行组间差异检验后,可以根据检验结果使用Statsmodels库中的函数进行显著性检验。例如,可以计算p值,如果p值小于显著性水平(通常为0.05),则可以得出结论,即三组数据之间存在显著差异。 最后,可以使用可视化库(如Matplotlib或Seaborn)将组间差异的显著性呈现出来。例如,可以绘制柱状图或箱线图,以显示三组数据之间的差异,并使用不同的颜色或标记来表示显著差异。 综上所述,Python具备进行三组数据的组间差异检验,并显示组间差异显著性的能力。通过合理使用NumPy、SciPy和Statsmodels等库,可以进行统计分析,并使用可视化库呈现结果。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值