描述
城堡是一个4×4的方格,为了保卫城堡,现需要在某些格子里修建一些堡垒。城堡中的某些格子是墙,其余格子都是空格,堡垒只能建在空格里,每个堡垒都可以向上下左右四个方向射击,如果两个堡垒在同一行或同一列,且中间没有墙相隔,则两个堡垒都会把对方打掉。问对于给定的一种状态,最多能够修建几个堡垒。
输入
每个测例以一个整数n(1<=n<=4)开始,表示城堡的大小。接下来是n行字符每行n个,‘X’表示该位置是墙,‘.’表示该位置是空格。n等于0标志输入结束。
输出
每个测例在单独的一行输出一个整数:最多修建堡垒的个数。
输入样例
4
.X..
….
XX..
….
2
XX
.X
3
.X.
X.X
.X.
3
…
.XX
.XX
4
….
….
….
….
0
输出样例
5
1
5
2
4
分析:采用回溯算法,与0-1背包问题类似,在可以放的位置分别放上1(代表放入堡垒)或者.(代表什么都不放),用类似于穷举二进制的方法计算出所有可能。
堡垒问题与其他问题不同的关键在于,如何判断一个地方是否能放堡垒,如果它的同一行或同一列有其他堡垒,且没有墙的阻隔,则不能放。所以,在本问题中,以本次搜索的对象a[row][col]为分隔,分别向左右上下查看能否放置堡垒,遇到墙则break,很好地解决了这一问题。
#include <iostream>
using namespace std;
int n,Max;
char a[4][4]={0}; //注意:此处一定要为char型
void check()
{
int i,j,total=0;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
if(a[i][j]=='1')
total++;
}
if(total>Max)
Max=total;
}
int canplace(int m)
{
int row=m/n;
int col=m%n;
if(a[row][col]=='X')
return 0;
int i;
for(i=row-1;i>=0;i--) //从当前位置网上搜索
{
if(a[i][col]=='1')
return 0;
if(a[i][col]=='X')
break;
}
for(i=row+1;i<n;i++) //从当前位置网下搜索
{
if(a[i][col]=='1')
return 0;
if(a[i][col]=='X')
break;
}
for(i=col-1;i>=0;i--) //从当前位置网左搜索
{
if(a[row][i]=='1')
return 0;
if(a[row][i]=='X')
break;
}
for(i=col+1;i<n;i++) //从当前位置网右搜索
{
if(a[row][i]=='1')
return 0;
if(a[row][i]=='X')
break;
}
return 1;
}
void search(int m)
{
int row=m/n;
int col=m%n;
if(m==n*n)
check();
else
{
if(canplace(m))
{
a[row][col]='1';
search(m+1);
a[row][col]='.';
//search(m+1);
}
search(m+1);
}
}
int main()
{
while(true)
{ int i,j;
cin>>n;
if(n==0)
break;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
cin>>a[i][j];
}
}
Max=0;
search(0); //把二维数组简化为一维数组,便于传参
cout<<Max<<endl;
}
return 0;
}
编写中出现的问题,Po主在写此程序时,连输入都没有输完,就一直无限循环得输出n的值,一直百思不得其解,后来发现,竟然是二维数组a[][]不小心定义成了int型