当对于一个操作的静态操作较简单,动态操作较复杂,并且后面对前面没有影响,还有操作序列可以合并(前提真的很多,还有看你能不能想出来),我们可以使用时间分治。
以归并排序举例,归并排序的代码如下:
void MergeSort(int l,int r)
{
if (l == r) return;
int mid = (l+r)/2;
MergeSort(l,mid);
MergeSort(mid+1,r);
inplace_sort(a+l,a+mid+1,a+r+1);
}
(虽然好像inplace_sort就是归并排序啊233)
将归并排序操作的序列想象成一个操作序列,很明显,归并排序满足一下几点性质
1.区间可以合并
2.前面的序列与后面无关
于是时间复杂度 T(n) = 2*T(n/2)+O(n)(合并的代价,对于实际问题就是静态操作的代价)
根据主算法, T(n) = n logn
(其实我也没完全搞懂,关于区间合并这一块事实上难度是很大的,如HNOI city 城市建设,各种缩点乱搞)
那么,时间分治作用事实上就是一个替代品,跟主席树一样强大的替代品,它可以解决许多需要树套树的问题,甚至可以解决一些范围极大的问题
(上一道水题理解一下)
BZOJ 1176
给定一个初值相同的矩阵,有两个操作
(1)1 x y delta 给(x,y)加上delta
(2)2 x1 y1 x2 y2 求矩形内的和
其中w <= 2000000,q<=160000,m<=10000
经典线段树套线段树,不对好像范围有点大……二维线段树早就不知道MLE到哪里去了
于是我们便想到了时间分治,我们将[x1,y1],[x2,y2]差分成四个和
以x为第一关键字,y为第二关键字,再用树状数组维护一下就ok了(具体细节参考代码)
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXW = 2000001;
const int MAXN = 200000;
struct Node
{
int x,y,delta,flag,idx;
bool operator < (const Node &rhs) const
{
return x < rhs.x || (x == rhs.x && y < rhs.y);
}
};
int s,w,cnt,cntq;
int ans[MAXN];
Node C[MAXN];
int c[MAXW];
void modify(int pos,int delta)
{
for (int i=pos;i<=w;i+=(i&-i)) c[i] += delta;
}
int query(int pos)
{
int ans = 0;
for (int i=pos;i>0;i-=(i&-i)) ans += c[i];
return ans;
}
void solve(int l,int r)
{
if (l == r) return;
int mid = (l+r)/2;
solve(l,mid);
solve(mid+1,r);
int j = l;
for (int i=mid+1;i<=r;i++)
{
if (C[i].flag == 2)
{
for ( ;j<=mid && C[j].x <= C[i].x;j++)
if (C[j].flag == 1) modify(C[j].y,C[j].delta);
ans[C[i].idx] += query(C[i].y)*C[i].delta;
}
}
for (int i=l;i<j;i++) if (C[i].flag == 1) modify(C[i].y,-C[i].delta);
inplace_merge(C+l,C+mid+1,C+r+1);
}
int main()
{
scanf("%d%d",&s,&w);
int oper;
while (scanf("%d",&oper) == 1 && oper != 3)
{
if (oper == 1)
{
int x,y,delta;
scanf("%d%d%d",&x,&y,&delta);
C[++cnt] = (Node){x,y,delta,1,cnt};
}
else
{
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
cntq++;
C[++cnt] = (Node){x1-1,y1-1,1,2,cntq};
C[++cnt] = (Node){x1-1,y2,-1,2,cntq};
C[++cnt] = (Node){x2,y1-1,-1,2,cntq};
C[++cnt] = (Node){x2,y2,1,2,cntq};
ans[cntq] = (x2-x1+1)*(y2-y1+1)*s;
}
}
solve(1,cnt);
for (int i=1;i<=cntq;i++) printf("%d\n",ans[i]);
return 0;
}
还有那些比较复杂的区间合并,例如cf最近那题动态割边什么的……以后再说吧