达观杯文本智能处理(一)
1.赛题背景介绍
2018年人工智能的发展在运算智能和感知智能已经取得了很大的突破和优于人类的表现。而在以理解人类语言为入口的认知智能上,目前达观数据自然语言处理技术已经可以实现文档自动解析、关键信息提取、文本分类审核、文本智能纠错等一定基础性的文字处理工作,并在各行各业得到充分应用。
自然语言处理一直是人工智能领域的重要话题,而人类语言的复杂性也给 NLP 布下了重重困难等待解决。长文本的智能解析就是颇具挑战性的任务,如何从纷繁多变、信息量庞杂的冗长文本中获取关键信息,一直是文本领域难题。随着深度学习的热潮来临,有许多新方法来到了 NLP 领域,给相关任务带来了更多优秀成果,也给大家带来了更多应用和想象的空间。
此次比赛,达观数据提供了一批长文本数据和分类信息,希望选手动用自己的智慧,结合当下最先进的NLP和人工智能技术,深入分析文本内在结构和语义信息,构建文本分类模型,实现精准分类。未来文本自动化处理的技术突破和应用落地需要人工智能从业者和爱好者的共同努力,相信文本智能处理技术因为你的算法,变得更加智能!
任务
建立模型通过长文本数据正文(article),预测文本对应的类别(class)
数据
数据包含2个csv文件:
》train_set.csv:此数据集用于训练模型,每一行对应一篇文章。文章分别在“字”和“词”的级别上做了脱敏处理。共有四列:
第一列是文章的索引(id),第二列是文章正文在“字”级别上的表示,即字符相隔正文(article);第三列是在“词”级别上的表示,即词语相隔正文(word_seg);第四列是这篇文章的标注(class)。
注:每一个数字对应一个“字”,或“词”,或“标点符号”。“字”的编号与“词”的编号是独立的!
》test_set.csv:此数据用于测试。数据格式同train_set.csv,但不包含class。
注:test_set与train_test中文章id的编号是独立的。
2.下载数据,读取数据,观察数据
数据下载地址:
http://www.dcjingsai.com/common/cmpt/“达观杯”文本智能处理挑战赛_赛体与数据.html
下载后会得到一个压缩包,训练集和测试集数据均在里面.
读取数据
##读取数据
import pandas as pd
import numpy as np
train_data=pd.read_csv('datalab/14936/train_set.csv')
观察数据
##观察数据前10行
train_data.head(10)
结果显示共有4列,分别是id,article,word_seg,class.
##观察数据所有信息
train_data.info
##统计各类别样本的个数
gyb_class=train_data.groupby("class")
gyb_class.groups
可以看到各类别中有多少样本,例如第一类中有5375个样本,以此类推。
3.将训练集拆分为训练集和验证集
利用sklearn中的train_test_split拆分训练集和验证集,其中70%为训练集,30%为验证集。
对数据以及赛题的理解和发现还有待探究