BloomFilter 是一种空间效率极高的随机数据结构,它利用位数组和哈希函数来实现快速判断一个元素是否在集合中。Guava
BloomFilter 是 Google Guava
提供的一种布隆过滤器实现,它可以用于快速判断一个元素是否存在于某个集合中。下面我们将详细介绍 Guava BloomFilter
的作用以及源码分析。
使用场景
可以用于以下场景:
- 缓存穿透:当查询一个不存在于缓存中的数据时,如果没有采取任何措施,就会直接查询数据库,这样会导致大量无效的查询请求发送到数据库上,增加了数据库的压力。使用
BloomFilter 可以在缓存层面进行初步过滤,从而减少对数据库的访问次数。 - 防止爬虫:爬虫通常会通过不断地发起请求扫描网页上的数据信息。使用 BloomFilter 可以对访问的 IP 地址或者 URL
进行快速的去重,从而有效地阻止爬虫的攻击。 - 海量数据查找:在海量数据中,查找一个元素的时间复杂度通常是 O(n) 的,比较耗时。而使用 BloomFilter
可以将查找的时间复杂度降低为 O(1),从而提高查找效率。 - 分布式系统中的去重:在分布式系统中,由于数据的分散和传输等原因,很容易出现重复数据。使用 BloomFilter
可以在本地节点上先进行去重,从而减少节点之间数据的传输量。
总之,使用 BloomFilter 可以在很大程度上提高系统的效率和性能,并且可以广泛应用于各种需要快速判断元素是否存在的场景。
BloomFilter 的原理
BloomFilter 采用的是一种基于哈希表实现的算法,核心思想是通过多个哈希函数对要添加的元素进行多次映射,将其映射到不同的位置上,并将这些位置置为 1。当查询某个元素时,只需要对该元素进行相同的哈希映射,判断得到的位置是不是都为 1 就可以了。如果所有的位置都为 1,则说明该元素可能在集合中,否则该元素肯定不在集合中。
但是 BloomFilter 存在一定的误判率,也就是说,当判断某个元素不存在时,有可能会误判成存在。这是因为在哈希映射的过程中,不可避免地会出现多个元素映射到同一个位置的情况,从而导致误判的发生。因此,在实际使用过程中,需要根据实际需求来选择合适的误判率,以及合适的哈希函数个数和位数组大小等参数。
Guava BloomFilter 的实现
Guava BloomFilter 是基于 BloomFilter 实现的一种数据结构。它采用了以下几个关键的技术:
MurmurHash:MurmurHash 是一种非加密型哈希函数,广泛应用于哈希表、BloomFilter 等领域。它具有哈希速度快、分布均匀等特点,因此成为了 BloomFilter 中常用的哈希函数之一。
BitArray:BitArray 是 Guava 中专门设计的一种位数组实现,用于在内存中存储 BloomFilter 中每个元素的哈希映射结果。它采用 long 数组来存储位信息,每个 long 类型的变量可以存储 64 个位信息。使用 long 类型的变量可以大幅度降低内存占用。
mightContain
Guava BloomFilter 提供了一个 mightContain 方法,用于判断某个元素是否可能存在于 BloomFilter 中。该方法实现的核心思想是对待查询的元素进行多次哈希计算,并检查计算得到的位置上是否都为 1。如果所有位置都为 1,则认为该元素可能在 BloomFilter 中;否则,认为该元素肯定不在 BloomFilter 中。
下面是 Guava BloomFilter 中 mightContain 方法的源码实现:
@Override
public boolean mightContain(T object) {
long bitSize = bits.bitSize();
long hash64 = Hashing.murmur3_128().hashObject(object, funnel).asLong();
int hash1 = (int) hash64;
int hash2 = (int) (hash64 >>> 32);
for (int i = 1; i <= numHashFunctions; ++i) {
int nextHash = hash1 + i * hash2;
if (nextHash < 0) {
nextHash = ~nextHash;
}
if (!bits.get(nextHash % bitSize)) {
return false;
}
}
return true;
}
该方法接收一个要查询的对象作为参数,并返回一个布尔值表示该对象是否可能存在于 BloomFilter 中。
首先,该方法通过 MurmurHash3 算法计算出待查询对象的哈希值。具体而言,它使用 murmur3_128() 方法将待查询对象转换为字节数组,并使用 MurmurHash3 128 位版本计算出一个 128 位的哈希值,然后取其中的低 64 位作为哈希值。
接下来,该方法使用计算出的哈希值和预先设定的哈希函数个数计算出多个哈希值。具体而言,它将 64 位哈希值拆分成两个 32 位整数,然后根据公式 hash1 + i * hash2(i 的取值范围为 1 到哈希函数个数)计算出 numHashFunctions 个哈希值。
最后,该方法检查计算得到的每个哈希值对应位置上是否都为 1。如果有任何一个位置上不为 1,则认为该元素肯定不在 BloomFilter 中;否则,认为该元素可能在 BloomFilter 中。
需要注意的是,在哈希计算的过程中,由于采用了 MurmurHash3 算法,并且使用了两个 32 位整数来计算哈希值,因此可以大大减小哈希冲突的概率。同时,在检查哈希值对应位置是否为 1 的过程中,也可以快速地判断某个元素是否存在于 BloomFilter 中,从而提高查询效率。