目录
7-1 还原二叉树
给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度。
输入格式:
输入首先给出正整数N(≤50),为树中结点总数。下面两行先后给出先序和中序遍历序列,均是长度为N的不包含重复英文字母(区别大小写)的字符串。
输出格式:
输出为一个整数,即该二叉树的高度。
输入样例:
9
ABDFGHIEC
FDHGIBEAC
输出样例:
5
参考代码
#include<stdio.h>
int max(int a,int b)
{
return a>b?a:b; // 三目运算符,表达式为真时 则选取冒号前的值 否则选冒号后的
}
//求二叉树的高度
int dfs(char *pre, char *in,int n){
if(n==0)
return 0; //若没有结点,为空树
int i;
for(i=0;i<n;i++)
if(in[i]==pre[0])
break; // 找到根结点在中序的位置
int left=dfs(pre+1,in,i); // 递归调用dfs(),求左子树的深度
int right=dfs(pre+i+1,in+i+1,n-i-1); //递归调用dfs(),求右子树的深度
return max(left,right)+1; //返回左右子树深度的较大值中的较大值+根结点
}
int main(){
int n;
scanf("%d",&n);
char pre[n+1],in[n+1]; //定义先序和中序
scanf("%s%s",pre,in);
printf("%d\n",dfs(pre,in,n));
return 0;
}
代码解析
核心:递归调用dfs
7-2 朋友圈
某学校有N个学生,形成M个俱乐部。每个俱乐部里的学生有着一定相似的兴趣爱好,形成一个朋友圈。一个学生可以同时属于若干个不同的俱乐部。根据“我的朋友的朋友也是我的朋友”这个推论可以得出,如果A和B是朋友,且B和C是朋友,则A和C也是朋友。请编写程序计算最大朋友圈中有多少人。
输入格式:
输入的第一行包含两个正整数N(≤30000)和M(≤1000),分别代表学校的学生总数和俱乐部的个数。后面的M行每行按以下格式给出1个俱乐部的信息,其中学生从1~N编号:
第i个俱乐部的人数Mi(空格)学生1(空格)学生2 … 学生Mi
输出格式:
输出给出一个整数,表示在最大朋友圈中有多少人。
输入样例:
7 4
3 1 2 3
2 1 4
3 5 6 7
1 6
输出样例:
4
参考代码
#include<stdio.h>
#define Max 100000
int book[Max];
int f[Max];
// 初始化init
void init(int n)
{
for(int i=1;i<=n;i++){
f[i]=i; // 设置父节点(父节点初始为自身)
book[i]=0; // 设置朋友数为0
}
}
// 查询find:找到祖宗
int find(int x)
{
if(f[x]==x) // 递归出口,到达祖先位置,返回祖先
return x;
else{
f[x]=find(f[x]); // 不断向上查找祖先(路径亚索)
return f[x]; // 返回父节点(祖先)
}
}
// 合并merge/union:合并祖宗
void merge(int x,int y)
{
int x_f = find(x); // 找到x的祖先
int y_f = find(y); // 找到y的祖先
f[x_f] = y_f; // x的祖先指向y的祖先
}
// 找到最大朋友数
void FindMax(int n)
{
int i;
for(i=1;i<=n;i++){
book[find(i)]++; // 祖宗的朋友数+1
}
int ans=0;
for(i=1;i<=n;i++){
if(book[i]>ans)
ans=book[i];
}
printf("%d",ans); // 输出祖宗朋友数最大的
}
int main()
{
int n,m;
scanf("%d %d",&n,&m);
init(n);
// 录入数据
for(int i=0;i<m;i++){
int x,j;
scanf("%d",&x);
int a[x]; // a[x]数组作为临时数组用来存学生编号
for(j=0;j<x;j++)
scanf("%d",&a[j]);
for(j=1;j<x;j++)
merge(a[j-1],a[j]);
}
FindMax(n);
return 0;
}
代码解析
并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题。一些常见的用途有求连通子图、求最小生成树的Kruskal算法和求最近公共祖先(LCA)等。
并查集的基本操作:
并查集:①初始化init→②找祖宗find→③合并祖宗merge/union
1.初始化init:
int fa[MAXN];
void init(int n){
for (int i= 1;i<=n;++i)
fa[i]= i;
}
2.查询find:
int find(int i){
if(fa[i] == i) //递归出口,当到达了祖先位置,就返回祖先
return i;
else
return find(fa[i]); //不断往上查找祖先
}
优化find():
int find(int i){
if(i == fa[i])
return i;
else{
fa[i] = find(fa[i]); //该步进行了路径压缩
return fa[i]; //返回父节点
}
3.合并union:
vo1d unionn( int i,int j){
int i_fa = find(i); //找到i的祖先
int j_fa = find(j); //找到j的祖先
fa[i_fa] =j_fa; //i的祖先指向j的祖先。
}
【参考资料】
7-3 修理牧场
农夫要修理牧场的一段栅栏,他测量了栅栏,发现需要N块木头,每块木头长度为整数Li个长度单位,于是他购买了一条很长的、能锯成N块的木头,即该木头的长度是Li的总和。
但是农夫自己没有锯子,请人锯木的酬金跟这段木头的长度成正比。为简单起见,不妨就设酬金等于所锯木头的长度。例如,要将长度为20的木头锯成长度为8、7和5的三段,第一次锯木头花费20,将木头锯成12和8;第二次锯木头花费12,将长度为12的木头锯成7和5,总花费为32。如果第一次将木头锯成15和5,则第二次锯木头花费15,总花费为35(大于32)。
请编写程序帮助农夫计算将木头锯成N块的最少花费。
输入格式:
输入首先给出正整数N(≤104),表示要将木头锯成N块。第二行给出N个正整数(≤50),表示每段木块的长度。
输出格式:
输出一个整数,即将木头锯成N块的最少花费。
输入样例:
8
4 5 1 2 1 3 1 1
输出样例:
49
参考代码
#include<stdio.h>
// 数组的两个数据交换位置
void swap(int *a,int *b) {
int temp = *a;
*a = *b;
*b = temp;
}
// Sort排序,data[]数组最后两位为权值最小
void Sort(int data[],int n)
{
int i;
for(i=1;i<n;i++)
{
if(data[i]<data[i+1])
swap(&data[i],&data[i+1]);
}
for(i=1;i<n-1;i++)
{
if(data[i]<data[i+1])
swap(&data[i],&data[i+1]);
}
}
int main()
{
int n,data[300001],i,sum=0;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&data[i]);
while(n>=2) // 循环结束条件:只剩一个结点(根节点)
{
Sort(data,n);
data[n-1]=data[n-1]+data[n]; // 权值最小的两个结点合并形成新的权值结点
sum=sum+data[n-1]; // 计算当前消费
n--;
}
printf("%d",sum);
}
代码解析
本题主要采用构造最小生成树(哈夫曼树)的思想,每次找两个最小的子节点,构造父节点,最后输出根节点(Kruskal算法)
哈夫曼树的构造:
给定n个权值分别为w1,w2,...,wn的结点,构造哈夫曼树:
1.将n个结点分别作为n棵仅含一个结点的二叉树,构成森林F
2.构造一个新结点,从F中选取两颗结点权值最小的树作为新结点的左、右子树,并将新节点的权值置为左、右子树上跟姐递延的权值之和
3.从F中删除刚才选出的两棵树,同时将新的到的树加入F中
4.重复步骤2和3.直至F中只剩下一棵树为止
哈夫曼树的特点:
(1)每个初始结点最终都曾为叶节点,且权值越小的结点到根节点的路径长度越大
(2)构造过程中共新建了n-1个结点(双分支结点),哈夫曼树的结点总数为2n-1
(3)每次构造都选择2棵树作为新结点的孩子,哈夫曼树中不存在度为1的结点
【参考资料】
最小生成树(Kruskal(克鲁斯卡尔)和Prim(普里姆))算法动画演示_哔哩哔哩_bilibili
7-4 玩转二叉树
给定一棵二叉树的中序遍历和前序遍历,请你先将树做个镜面反转,再输出反转后的层序遍历的序列。所谓镜面反转,是指将所有非叶结点的左右孩子对换。这里假设键值都是互不相等的正整数。
输入格式:
输入第一行给出一个正整数N
(≤30),是二叉树中结点的个数。第二行给出其中序遍历序列。第三行给出其前序遍历序列。数字间以空格分隔。
输出格式:
在一行中输出该树反转后的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。
输入样例:
7
1 2 3 4 5 6 7
4 1 3 2 6 5 7
输出样例:
4 6 1 7 5 3 2
参考代码
#include<stdio.h>
// 全局定义前序遍历序列pre[],中序遍历序列in[],层次遍历数组level[](置零)
int pre[1000000],in[1000000],n,level[1000000]={0};
// 深度优先搜索算法遍历二叉树,同时将树的数据按照一定顺序存入层次遍历数组(包含反转操作)
void dfs(int pre[],int in[],int n,int index)
{
if(n==0)
return;
level[index]=pre[0];
int i;
for(i=0;i<n;i++)
if(pre[0]==in[i])
break;
dfs(pre+1,in,i,index*2+2); // +2表示右子树
dfs(pre+i+1,in+i+1,n-1-i,index*2+1); // +1表示左子树
}
int main()
{
int num=1,i;
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d",&in[i]);
for(i=0;i<n;i++)
scanf("%d",&pre[i]);
dfs(pre,in,n,0); // 调用dfs遍历、存储
// 输出层次遍历数组
for(i=0;i<1000000;i++)
{
if(num<n && level[i]!=0) // 循环条件:num
{
printf("%d ",level[i]);
num++;
}
else if(level[i]!=0)
{
printf("%d",level[i]);
break;
}
}
return 0;
}
代码解析
结合实验7-1,采用深度优先搜索算法dfs遍历二叉树的同时通过level[]数组,层次存储结点数据。
每一层(包括本层)之前的节点个数总是上一层结点个数的两倍+1(左或右子树为空也算作在内),利用这个规律,在dfs遍历二叉树的同时,将结点数据存储到数据level[]中,最后输出level[]数组,实现层次遍历。
7-5 根据后序和中序遍历输出先序遍历
本题要求根据给定的一棵二叉树的后序遍历和中序遍历结果,输出该树的先序遍历结果。
输入格式:
第一行给出正整数N(≤30),是树中结点的个数。随后两行,每行给出N个整数,分别对应后序遍历和中序遍历结果,数字间以空格分隔。题目保证输入正确对应一棵二叉树。
输出格式:
在一行中输出Preorder:
以及该树的先序遍历结果。数字间有1个空格,行末不得有多余空格。
输入样例:
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
输出样例:
Preorder: 4 1 3 2 6 5 7
参考代码
#include<stdio.h>
typedef struct node{
int data;
struct node *lchild,*rchild;
}Tree;
Tree* CreatTree(int in[],int post[],int n)
{
if(n==0)
return NULL;
int i;
Tree *tree=(Tree*)malloc(sizeof(Tree));
tree->data=post[n-1];
for(i=0;i<n;i++)
if(post[n-1]==in[i])
break;
tree->lchild=CreatTree(in,post,i);
tree->rchild=CreatTree(in+i+1,post+i,n-i-1);
return tree;
}
void CountTree(Tree* tree)
{
if(tree!=NULL)
{
printf(" %d",tree->data);
CountTree(tree->lchild);
CountTree(tree->rchild);
}
}
int main()
{
int n,i,j;
int post[100001],in[100001];
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d",&post[i]);
for(i=0;i<n;i++)
scanf("%d",&in[i]);
Tree* tree=CreatTree(in,post,n);
printf("Preorder:");
CountTree(tree);
}
代码解析
7-6 完全二叉树的层序遍历
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是完美二叉树。对于深度为 D 的,有 N 个结点的二叉树,若其结点对应于相同深度完美二叉树的层序遍历的前 N 个结点,这样的树就是完全二叉树。
给定一棵完全二叉树的后序遍历,请你给出这棵树的层序遍历结果。
输入格式:
输入在第一行中给出正整数 N(≤30),即树中结点个数。第二行给出后序遍历序列,为 N 个不超过 100 的正整数。同一行中所有数字都以空格分隔。
输出格式:
在一行中输出该树的层序遍历序列。所有数字都以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
8
91 71 2 34 10 15 55 18
输出样例:
18 34 55 71 2 10 15 91
参考代码
#include<bits/stdc++.h>
using namespace std;
int i,n,a[100];
// 生成完全二叉树遍历数组a[]
void create(int x)
{
if(x<=n){
create(2*x);
create(2*x+1);
cin>>a[x];
}
}
int main()
{
cin>>n;
create(1);
for(i=1;i<=n;i++){
if(i!=n)
cout<<a[i]<<" ";
else
cout<<a[i];
}
return 0;
}
代码解析
完全二叉树采用顺序存储方式,如果有左孩子,则编号为2i,如果有右孩子,编号为2i+1,然后按照后序遍历的方式(左右根),进行输入,最后顺序输出即可。
7-7 列出叶结点
对于给定的二叉树,本题要求你按从上到下、从左到右的顺序输出其所有叶节点。
输入格式:
首先第一行给出一个正整数 N(≤10),为树中结点总数。树中的结点从 0 到 N−1 编号。随后 N 行,每行给出一个对应结点左右孩子的编号。如果某个孩子不存在,则在对应位置给出 "-"。编号间以 1 个空格分隔。
输出格式:
在一行中按规定顺序输出叶节点的编号。编号间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
8
1 -
- -
0 -
2 7
- -
- -
5 -
4 6
输出样例:
4 1 5
参考代码
#include<bits/stdc++.h>
using namespace std;
struct Tree
{
int f,l,r;
}s[10];
int n;
void ListLeave(int k)
{
int flag=0;
int a[20];
int head=0,tail=0;
a[tail++]=k;
while(head<tail){
if(s[a[head]].l!=-1)
a[tail++]=s[a[head]].l;
if(s[a[head]].r!=-1)
a[tail++]=s[a[head]].r;
if(s[a[head]].l==s[a[head]].r){
if(flag)
printf(" %d",a[head]);
else
printf("%d",a[head]);
flag++;
}
head++;
}
}
int main()
{
char a,b;
int i;
cin>>n;
for(i=0;i<n;i++)
s[i].f=-1;
for(i=0;i<n;i++){
getchar();
scanf("%c %c",&a,&b);
if(a!='-'){
s[i].l=a-'0';
s[a-'0'].f=i;
}
else
s[i].l=-1;
if(b!='-'){
s[i].r=b-'0';
s[b-'0'].f=i;
}
else
s[i].r=-1;
}
for(i=0;i<n;i++){
if(s[i].f==-1)
ListLeave(i);
}
}
代码解析
7-8 部落
在一个社区里,每个人都有自己的小圈子,还可能同时属于很多不同的朋友圈。我们认为朋友的朋友都算在一个部落里,于是要请你统计一下,在一个给定社区中,到底有多少个互不相交的部落?并且检查任意两个人是否属于同一个部落。
输入格式:
输入在第一行给出一个正整数N(≤104),是已知小圈子的个数。随后N行,每行按下列格式给出一个小圈子里的人:
K P[1] P[2] ⋯ P[K]
其中K是小圈子里的人数,P[i](i=1,⋯,K)是小圈子里每个人的编号。这里所有人的编号从1开始连续编号,最大编号不会超过104。
之后一行给出一个非负整数Q(≤104),是查询次数。随后Q行,每行给出一对被查询的人的编号。
输出格式:
首先在一行中输出这个社区的总人数、以及互不相交的部落的个数。随后对每一次查询,如果他们属于同一个部落,则在一行中输出Y
,否则输出N
。
输入样例:
4
3 10 1 2
2 3 4
4 1 5 7 8
3 9 6 4
2
10 5
3 7
输出样例:
10 2
Y
N
参考代码
#include<stdio.h>
#define Max 100000
int book[Max];
int f[Max]; // 祖宗结点数组
// 初始化init
void init(int n)
{
for(int i=1;i<=n;i++){
f[i]=i; // 设置父节点(父节点初始为自身)
book[i]=0; // 设置人数为0
}
}
// 查询find:找到祖宗
int find(int x)
{
if(f[x]==x) // 递归出口,到达祖先位置,返回祖先
return x;
else{
f[x]=find(f[x]); // 不断向上查找祖先(路径亚索)
return f[x]; // 返回父节点(祖先)
}
}
// 合并merge/union:合并祖宗
void merge(int x,int y)
{
int x_f = find(x); // 找到x的祖先
int y_f = find(y); // 找到y的祖先
f[x_f] = y_f; // x的祖先指向y的祖先
}
// 找到最大朋友数
void FindTribe(int n)
{
int tribe[Max]={0};
int num_per=n,num_tri=0;
for(int i=1;i<=n;i++){
if(tribe[find(i)] == 0){
tribe[find(i)] = 1;
num_tri++;
}
}
printf("%d %d\n",num_per,num_tri); // 输出祖宗朋友数最大的
}
void judge(int a, int b){
if(find(a) == find(b))
printf("Y\n");
else
printf("N\n");
}
int main()
{
int m;
int num=0; // 用于统计成员数量,初始为0
scanf("%d",&m);
init(Max);
// 录入数据
for(int i=0;i<m;i++){
int x,j;
scanf("%d",&x);
int a[x]; // a[x]数组作为临时数组用来存学生编号
for(j=0;j<x;j++){
scanf("%d",&a[j]);
if(book[a[j]]==0){
book[a[j]] = 1;
num++;
}
}
for(j=1;j<x;j++)
merge(a[j-1],a[j]);
}
FindTribe(num);
int n;
scanf("%d",&n);
for(int i=0; i<n; i++){
int a,b;
scanf("%d %d",&a, &b);
judge(a,b);
}
return 0;
}
代码解析
同样是并查集(Union-find Sets)问题,可参考7-2朋友圈,注意设置数组计算人数和部落数量。
7-9 建立与遍历二叉树
以字符串的形式定义一棵二叉树的先序序列,若字符是‘#’, 表示该二叉树是空树,否则该字符是相应结点的数据元素。读入相应先序序列,建立二叉链式存储结构的二叉树,然后中序遍历该二叉树并输出结点数据。
输入格式:
字符串形式的先序序列(即结点的数据类型为单个字符)
输出格式:
中序遍历结果
输入样例:
在这里给出一组输入。例如:
ABC##DE#G##F###
输出样例:
在这里给出相应的输出。例如:
CBEGDFA
参考代码
#include<bits/stdc++.h>
struct node
{
char data;
struct node* l;
struct node* r;
};
void Creat(struct node* *T)
{
char ch=getchar();
if(ch=='#')
*T=NULL;
else{
*T=(struct node*)malloc(sizeof(struct node));
(*T)->data=ch;
Creat(&((*T)->l));
Creat(&((*T)->r));
}
}
void Show(struct node* BT)
{
if(BT){
Show(BT->l);
printf("%c",BT->data);
Show(BT->r);
}
}
int main()
{
struct node* T;
Creat(&T);
Show(T);
return 0;
}
代码解析
7-10 交换二叉树中每个结点的左孩子和右孩子
以二叉链表作为二叉树的存储结构,交换二叉树中每个结点的左孩子和右孩子。
输入格式:
输入二叉树的先序序列。
提示:一棵二叉树的先序序列是一个字符串,若字符是‘#’,表示该二叉树是空树,否则该字符是相应结点的数据元素。
输出格式:
输出有两行:
第一行是原二叉树的中序遍历序列;
第二行是交换后的二叉树的中序遍历序列。
输入样例:
ABC##DE#G##F###
输出样例:
CBEGDFA
AFDGEBC
参考代码
#include<bits/stdc++.h>
struct node
{
char data;
struct node* l;
struct node* r;
};
void Creat(struct node* *T)
{
char ch=getchar();
if(ch=='#')
*T=NULL;
else{
*T=(struct node*)malloc(sizeof(struct node));
(*T)->data=ch;
Creat(&((*T)->l));
Creat(&((*T)->r));
}
}
void Show(struct node* BT)
{
if(BT){
Show(BT->l);
printf("%c",BT->data);
Show(BT->r);
}
}
void Change(struct node* *T)
{
if((*T)->l||(*T)->r){
struct node* temp;
temp=(*T)->l;
(*T)->l=(*T)->r;
(*T)->r=temp;
if((*T)->l)
Change(&((*T)->l));
if((*T)->r)
Change(&((*T)->r));
}
}
int main()
{
struct node* T;
Creat(&T);
Show(T);
printf("\n");
Change(&T);
Show(T);
return 0;
}
代码解析
7-11 树的遍历
给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列。这里假设键值都是互不相等的正整数。
输入格式:
输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其后序遍历序列。第三行给出其中序遍历序列。数字间以空格分隔。
输出格式:
在一行中输出该树的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。
输入样例:
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
输出样例:
4 1 6 3 5 7 2
参考代码
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
struct node{
int data;
struct node *l;
struct node *r;
};
struct node* SetTree(int a[],int b[],int len){
struct node* BT;
int i;
if(len==0)
return NULL;
else{
BT=(struct node*)malloc(sizeof(struct node));
BT->data=a[len-1];
for(i=0;i<len;i++){
if(b[i]==a[len-1])
break;
}
BT->l=SetTree(a,b,i);
BT->r=SetTree(a+i,b+i+1,len-1-i);
}
return BT;
}
void cengXu(struct node* BT){
struct node* p[1200];
int in,out,flag;
in=out=0;
flag=1;
p[in++]=BT;
while(in>out){
if(p[out]){
if(flag){
printf("%d",p[out]->data);
flag=0;
}
else
printf(" %d",p[out]->data);
p[in++]=p[out]->l;
p[in++]=p[out]->r;
}
out++;
}
}
int main(){
int n,i;
scanf("%d",&n);
int f1[n],f2[n];
for(i=0;i<n;i++)
scanf("%d",&f1[i]);
for(i=0;i<n;i++)
scanf("%d",&f2[i]);
struct node* BT = SetTree(f1,f2,n);
cengXu(BT);
return 0;
}