自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

LeoLei8060的博客

作为一名C++/Qt程序员,我创建这个博客的目的是分享我学习和工作中积累的C++/Qt编程经验和心得,希望能帮助到其他C++/Qt程序员。

  • 博客(86)
  • 收藏
  • 关注

原创 快速上手LangChain:构建强大的语言模型应用

LangChain 是一个开源框架,旨在帮助开发者快速构建基于语言模型的应用程序。它提供了一系列工具和模块,使得处理复杂的语言任务变得更加容易。LangChain 支持多种语言模型,包括OpenAI的GPT-3、GPT-4,以及其他主流模型。context = "LangChain 是一个用于构建语言模型应用的框架。question = "LangChain 有哪些主要功能?

2024-07-05 10:42:28 450

原创 详解Stable Diffusion: 一种强大的图像生成技术

Stable Diffusion是一种基于扩散过程的图像生成算法。扩散过程本质上是一种随机过程,通过逐步添加噪声并反向去噪声的方式来生成图像。这种方法不仅能够生成高质量的图像,还能够在特定条件下进行图像编辑和插值。

2024-07-04 16:40:30 247

原创 新特性之C++17

临时物质化是指在需要一个完整的对象时,将一个临时的prvalue(纯右值)表达式转换为一个临时对象的过程。当 prvalue 需要作为引用的初始化值时: 如果一个 prvalue 被用作初始化一个引用,那么这个 prvalue 将会物质化为一个临时对象,以便引用可以绑定到它上面。在 prvalue 作为函数参数传递时: 如果函数参数是按值传递的,而传递的实参是 prvalue,那么这个 prvalue 将物质化为一个临时对象,然后将其传递给函数。在 prvalue 作为函数的返回值时。

2024-07-04 16:36:33 1666

原创 新特性之C++14

C++14 旨在修复 C++11 的一些缺陷,并提供了一些重要的增强功能,以简化开发者的日常编码工作。主要的新特性包括泛型 lambda、返回类型推导、二进制字面量以及标准库的一些改进。C++14 通过引入和优化多项新特性,使得编程更加简洁、高效。它不仅改进了 C++11 的不足之处,还为开发者提供了更强大的工具,以编写更安全、性能更高的代码。无论是在泛型编程、编译期计算,还是在日常编码中,C++14 都展示了其巨大的价值。

2024-07-03 17:27:14 457

原创 AI目标检测算法详解

从传统的滑动窗口法、基于特征的方法,到现代的R-CNN、YOLO、SSD等深度学习方法,目标检测算法不断演进,为各类应用场景提供了有力支持。近年来,随着深度学习的发展,AI目标检测算法取得了显著的进展,被广泛应用于自动驾驶、智能监控、医疗影像分析等领域。SSD结合了YOLO的快速检测和Faster R-CNN的高精度,通过在不同尺度的特征图上预测边界框和类别,兼顾了速度和精度。基于深度学习的目标检测方法,如Faster R-CNN,在医疗影像中表现出较高的精度和稳定性,帮助医生更高效地诊断疾病。

2024-07-03 15:43:55 638

原创 深入理解Qt的隐式共享机制

隐式共享是一种内存管理策略,它允许多个对象共享相同的数据副本,直到某个对象需要修改这些数据时才进行实际的数据复制。减少内存使用:多个对象可以共享同一个数据副本,而不是每个对象都持有一个数据副本。提高性能:减少数据复制的需要,从而降低程序的总体资源消耗。代码简化:开发者不需要关心数据如何被共享或复制,所有这些都由Qt框架自动管理。

2024-07-02 17:25:45 760

原创 LeetCode.68文本左右对齐

根据计算出的空格数构建每一行的字符串。对于非最后一行,每两个单词之间添加计算出的空格数。对于最后一行,单词之间添加一个空格,然后在行末添加足够的空格以达到。从当前索引开始,尽可能多地添加单词到当前行,直到添加下一个单词会使行长度超过。要求尽可能均匀分配单词间的空格数量。如果某一行单词间的空格不能均匀分配,则左侧放置的空格数要多于右侧的空格数。这个过程中,我们需要计算已包括的单词总长度加上必要的最小空格数(每两个单词之间至少一个空格)。” 来放置给定的单词;文本的最后一行应为左对齐,且单词之间不插入。

2024-07-02 09:35:00 385

原创 LeetCode.224基本计算器

逆波兰表示法是一种无需括号即可定义运算顺序的数学表达式表示方法,它利用栈的数据结构来处理操作符的优先级和括号,非常适合于解析和计算此类问题。注意:不允许使用任何将字符串作为数学表达式计算的内置函数,比如。,请你实现一个基本计算器来计算并返回它的值。给你一个字符串表达式。

2024-07-01 16:25:11 237

原创 深入理解TCP协议格式(WireShark分析)

TCP(Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通信协议。它的设计目的是为了提供一个可靠的端到端的数据传输服务,在不可靠的互联网环境中保证数据正确传输。

2024-07-01 03:00:00 1973

原创 LeetCode.76 最小覆盖子串

根据记录的最小窗口的位置和大小,返回最小覆盖子串。如果没有找到有效的子串,返回空字符串。指针的同时,检查当前窗口的大小,如果当前窗口的大小比已知的最小窗口小,更新最小窗口。指针来缩小窗口,直到窗口不再满足条件。在此过程中,记录可能的最小窗口。: 创建两个计数器或哈希表,一个用于。所有字符的子串,则返回空字符串。),一个用于当前窗口中的字符计数(,表示窗口的左右边界。中总共需要的不同字符种类数)。指针扩大窗口,直到窗口包含了。的所有字符),尝试通过移动。所有字符的最小子串。需求的字符种类数)和。

2024-06-29 22:10:17 287

原创 LeetCode.30 串联所有单词的子串

中所有单词组成,并且每个单词出现一次,才符合条件。这提示我们可以使用组合和检查的策略来找到这些子串。中所有字符串以任意顺序排列连接起来的子串。首先需要明确,只有当。

2024-06-29 22:01:17 347

原创 LeetCode.面试题17.24.最大子矩阵详解

首先,我们需要了解Kadane算法,这是一种用于在一维数组中找到最大子数组和的算法。给定一个数组,该算法可以找到一个连续子数组,其元素之和最大,并且能返回这个最大和。在所有列对组合被考虑之后,全局记录的最大值及其对应的子矩阵边界就是我们的答案。给定一个正整数、负整数和 0 组成的 N × M 矩阵,编写代码找出元素总和最大的子矩阵。对每一个固定的列对(left和right),我们都得到了一个行和数组。分别代表右下角的行号和列号。若有多个满足条件的子矩阵,返回任意一个均可。分别代表子矩阵左上角的行号和列号,

2024-06-28 21:27:54 382

原创 LeetCode.10正则表达式匹配详解

首先,我们定义一个二维的布尔数组dp,其中dp[i][j]表示字符串s的前i个字符和模式p的前j个字符是否可以匹配。这里,“前i个字符” 是指字符串s从开头到第i个字符,同理适用于模式p。

2024-06-28 21:18:04 474

原创 LeetCode.438找到字符串中所有字母异位词

基本思想是维护一个窗口,这个窗口可以增大也可以缩小,随着窗口的滑动,我们可以在O(1)的时间内更新窗口内的信息。这种方法的时间复杂度较高,因为它涉及到在每个可能的子串中对每个字符进行查找和删除操作,每次删除操作可能涉及到字符串的重构,其时间复杂度最坏情况下接近O(n * m^2),其中n是字符串。核心思路:因为异位词不关心字符的顺序,只关心字符能不能被匹配上,那就是要判断字符在子串中出现的次数和出现在p的次数是否相同,如果相同就说明子串属于异位词。的子串,返回这些子串的起始索引。不考虑答案输出的顺序。

2024-06-27 15:57:41 349

原创 LeetCode.295数据流的中位数详解

在面对数据流时,我们往往需要实时添加元素并频繁查询中位数。使用数组或列表虽然简单,但每次添加元素后要求的排序操作是低效的。是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。这种结构使得我们可以在对数时间内调整堆并找到中位数,非常适合处理大规模数据。返回到目前为止所有元素的中位数。以内的答案将被接受。

2024-06-27 14:17:45 327

原创 LeetCode.42接雨水

双指针法之所以有效,是因为无论从左边还是右边开始计算,雨水的接纳量都取决于遇到的“短板”(即较低的柱子)。通过同时从两端向中心遍历,我们可以确保不会遗漏任何可能的接水位置,同时避免了对已经遍历过的位置的重复计算。栈方法依赖于前后元素的比较,动态编程则需要额外的空间来存储每个位置左右两侧的最大高度。使用栈的方法在空间复杂度上是 O(n),时间复杂度也是 O(n)。的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。,从数组的末尾开始向前遍历,每个位置上的。,遍历输入数组,每个位置上的。

2024-06-26 15:08:33 418

原创 QtPropertyBrowser属性栏(附测试程序代码)

和QtProperty。是负责管理特定类型属性的值和行为的抽象基类。对于每种数据类型(如整数、浮点数、颜色等),都有一个相应的实现,这些实现继承自。每个负责存储具体属性的值,处理值的变更,并发出相应的信号。是一个抽象类,负责为QtProperty生成相应的编辑器控件。每种 PropertyManager都可以有一个对应的PropertyFactory实现,这个工厂基于管理的属性类型来创建适当的编辑器控件。是一个容器控件,用于显示和编辑通过管理的属性。它使用来为每个属性创建相应的编辑器控件。

2024-06-26 14:51:13 1560

原创 LeetCode.4寻找两个正序数组的中位数

我们的目标是在不实际合并两个数组的情况下找到中位数。这里的关键是通过适当的分割,使得合并后数组的左半部和右半部元素数量相等或左半部多一个元素。为了实现 O(log (m+n)) 的时间复杂度,我们需要使用二分查找来逻辑上定位两个数组的中位数,而不是实际合并两个数组。我们的目标是通过逻辑上分割这两个数组,找到一个点,使得左边的所有元素都小于右边的元素。理解问题的关键是要意识到,对于一个已排序的数组或两个数组的合并体,中位数将数组分为左右两部分,其中左部分的元素数量等于右部分或多一个。的正序(从小到大)数组。

2024-06-25 17:04:13 434

原创 LeetCode.23合并K个升序链表详解

合并多个已排序的链表并返回一个单一的排序链表是数据结构中的一个常见问题,尤其在需要处理多路归并排序时更为常见。本文将详细介绍如何有效地合并 k 个升序链表,每个链表的长度可能不同,但它们本身都是已排序的。我们可以利用这一点,每次从所有链表的当前头节点中取出最小值,以此来构建最终的排序链表。我们的目标是合并这些链表成一个单一的、完全排序的链表。请你将所有链表合并到一个升序链表中,返回合并后的链表。给定 k 个链表,每个链表的头节点存储在数组。给你一个链表数组,每个链表都已经按升序排列。

2024-06-25 16:51:42 342

原创 LeetCode.32最长有效括号详解

有效的括号字符串意味着每一个左括号 '(' 都可以找到一个相匹配的右括号 ')'。栈可以帮助我们追踪尚未匹配的括号,并有效地处理嵌套结构。)来分别跟踪左括号和右括号的数量。这种方法的关键在于通过两次遍历字符串来确保所有的括号都能找到对应的匹配,从而计算出最长的有效括号子串。第二次遍历与第一次遍历类似,但方向相反。的字符串,找出最长有效(格式正确且连续)括号子串的长度。第二种方法效率更高,但思路没有上面第一种思路清晰。这个解题思路主要参考了。我们采用两个计数器(

2024-06-24 22:07:47 421

原创 深入理解Qt属性系统[Q_PROPERTY]

属性系统说到底就是建立在类的成员变量之上,并通过标准化的接口(getter和setter)以及元对象系统来增强这些成员的功能。一致性和易用性提供一个统一的方法来访问和修改对象的属性,这意味着无论你在哪里或如何使用这些对象,访问和修改属性的方式总是相同的。这种一致性减少了学习和使用不同对象时的认知负担,使得开发更直观,同时也减少了代码中可能出现的错误。封装和数据保护通过标准化的 getter 和 setter 方法来访问和修改数据,这增强了封装性,保护了数据不被非法访问和修改。

2024-06-24 17:25:15 2143

原创 LeetCode.51N皇后详解

n 皇后问题是一个经典的回溯算法问题,其目标是在一个 n×n 的棋盘上放置 n 个皇后,使得这些皇后不能相互攻击。当它通过尝试可能的分步解决方案后发现当前解决方案不可能成立(即不能满足问题的约束条件),它会取消上一步甚至是几步的计算,再通过其他的可能的分步解决方案继续尝试。从图论的角度看,n 皇后问题可以被看作是在 n×n 的图中找到一个安全的顶点集合,其中任意两个顶点都不是相互可达的。这种图的特殊构造使其成为图着色问题的一个变种。n 皇后问题是组合数学的一个实例,特别是在它涉及到排列和组合的计算上。

2024-06-23 17:01:47 270

原创 LeetCode.25K个一组翻转链表详解

通过这样的步骤,我们可以实现题目要求的每k个节点一组的翻转,而不足k个的部分保持不变。给定一个链表和一个数字 k,任务是将链表中的每 k 个节点做一次翻转,如果链表的长度不是 k 的整数倍,则剩余的节点保持原有顺序。链表的翻转是基础操作,但在此问题中,我们不是翻转整个链表,而是翻转部分连续的节点。完成一个节点组的翻转后,需要将翻转后的尾部(翻转前的头部)连接到下一个节点组的头部。之后,这样原来的第二个节点就成了新的第一个节点,重复这个操作k-1次,便完成了一组的翻转。(当前节点的下一个节点)。

2024-06-23 16:51:30 923

原创 LeetCode.41缺失的第一个正数详解

首先,遍历数组,对于每个元素,如果它是一个正整数并且它不在它的理想位置(例如数字 iii 应该位于索引i−1),则将它与其理想位置上的元素交换。最后,遍历数组查找第一个非负数的索引,该索引加 1 即为未出现的最小正整数。通过确保所有的正整数均在数组中有一个对应的索引,我们可以通过索引位置来判断一个数是否存在于数组中。再次遍历数组,第一个其索引+1不等于其值的位置,就指示了未出现的最小正整数。首先,我们需要遍历数组,将所有非正整数以及大于数组长度的数替换为一个大于数组长度的值(例如。请你实现时间复杂度为。

2024-06-22 18:15:55 470

原创 LeetCode.239滑动窗口最大值问题详解

直观的解法是对每个窗口使用线性搜索来找到最大值,这种方法的时间复杂度是 O(n*k),其中 n 是数组长度。对于大数组和大窗口尺寸,这将非常低效。为了优化这个过程,我们可以使用双端队列(deque),这是一种允许在两端快速插入和删除的数据结构。:使用双端队列来存储每个窗口的潜在最大值的索引。队列的特点是保持从前到后的元素对应的数组值是递减的。这样,队列的头部总是当前窗口的最大值。代表滑动窗口的大小,该窗口从数组的最左侧滑动到最右侧。个数字,每次窗口向右移动一位。根据题意,我们需要输出每个窗口的最大值,即。

2024-06-22 18:02:23 301

原创 深入理解和实现Windows进程间通信(共享内存)

Windows共享内存(Shared Memory in Windows)是一种操作系统机制,允许不同的进程(程序)共享一段内存空间。这意味着多个进程可以同时访问同一个内存区域,用以交换数据或进行通信,这是进程间通信(IPC)的一种形式。使用共享内存通常可以提高应用程序之间的数据交换效率,因为它避免了数据的复制过程,直接在内存中进行读写。基于实际的磁盘文件或系统分页文件来创建内存映射文件对象。

2024-06-21 10:56:54 1476

原创 深入理解和实现Windows进程间通信(信号量)

信号量(Semaphore)是一个非常重要的同步机制,用于控制多个线程或进程对共享资源的访问。其基本思想是使用一个整数变量来表示可用资源的数量,通过对这个整数的操作来控制资源的分配,从而实现对竞态条件的管理。信号量的操作是原子的,即在一个操作进行的过程中,不会被其他进程或线程中断。功能:创建或打开一个命名或无名的信号量对象。声明参数lpSemaphoreAttributes:指向一个结构,该结构决定返回的句柄是否可以被子进程继承。如果为NULL,则句柄不可继承。

2024-06-21 09:44:17 1294

原创 深入理解和实现Windows进程间通信(消息队列)

Windows操作系统使用消息机制来促进应用程序与操作系统之间的通信。每当发生事件(如键盘按键、鼠标移动或系统事件)时,操作系统都会生成相应的消息。这些消息被发送到一个特定的消息队列中,随后由应用程序的消息循环处理。GetMessage这四个接口是Windows消息处理的核心,它们各自承担着不同的角色和功能。

2024-06-20 16:57:18 1306

原创 深入理解和实现Windows进程间通信(管道)

管道是共享内存的一部分,用于促进进程之间的通信。Windows支持两种类型的管道:匿名管道和命名管道。这两种管道虽然在使用场景和功能上有所区别,但底层实现原理都是基于操作系统的内核管理,涉及内存管理、数据同步和进程间安全通信。

2024-06-20 11:22:34 697

原创 深度神经网络(DNN)详解

深度神经网络作为现代人工智能的核心技术,凭借其强大的学习和表达能力,已经在多个领域取得了显著成果。然而,其应用也面临数据依赖、计算资源需求、过拟合和可解释性等挑战。随着技术的不断发展和创新,深度神经网络在未来将继续发挥重要作用,并推动人工智能领域的进一步发展。

2024-06-19 17:31:15 1035

原创 深入理解Qt状态机的应用(二)

前文《深入理解Qt状态机的应用(一)》介绍了状态机的理论知识以及简单的状态机示例。在实际应用场景中,状态机往往会比较复杂;本文将详细介绍分组状态、历史状态、并行状态以及其他技术。

2024-06-19 17:28:01 1315

原创 深入理解Qt状态机的应用(一)

有限状态机(finite-state machine)又称有限状态自动机(finite-state automaton),简称状态机,是表示有限个状态以及在这些状态之间的转移和动作等行为的数学计算模型。这个概念在计算机科学、数学、语言学、工程以及其他研究领域都有广泛的应用。有限状态机非常适合用于描述那些通过一系列的输入来转移状态的系统。

2024-06-18 16:44:23 632

原创 自然语言处理 (NLP) 概述

随着大数据和深度学习技术的发展,NLP在过去的几十年中取得了显著的进展,广泛应用于语音识别、机器翻译、情感分析、文本生成等领域。尽管 NLP 已取得长足进展,但仍面临许多挑战,如语言的多样性、上下文理解和生成自然语言的能力。未来,随着技术的不断进步,NLP 有望在更多复杂任务中实现突破,进一步提升计算机与人类之间的交流和协作效率。随着深度学习和大数据技术的进一步发展,NLP 的研究和应用前景将更加广阔,推动我们进入一个更加智能和互联的世界。

2024-06-18 08:59:28 493

原创 初识数据结构-B树

B树是一种多路搜索树(即每个节点可以有多个子节点)。在B树中,每个节点可以包含多个键(和相应的值)以及指向其子节点的指针。B树通过重新分布键值和拆分节点来保持平衡,从而确保树的高度保持较低。

2024-06-17 16:58:16 576

原创 QtWidgets样式表教程(附代码)

Qt Widgets的样式表(Style Sheet)类似于Web开发中的CSS,可以用于控制Qt应用程序中控件的外观。通过样式表,开发者可以统一管理控件的样式,简化代码,提升开发效率。

2024-06-17 16:53:01 1377

原创 决策树算法介绍:原理与案例实现

我们使用经典的鸢尾花数据集(Iris Dataset),该数据集包含150个样本,每个样本有4个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和一个目标变量(鸢尾花的品种:Setosa、Versicolour、Virginica)。本文介绍了决策树算法的基本原理,并通过鸢尾花数据集的案例,展示了如何实现和应用该算法。决策树作为一种直观且高效的机器学习算法,适用于多种分类和回归任务。然而,为了提升模型的泛化能力,避免过拟合,通常需要结合剪枝策略或集成方法(如随机森林、梯度提升树)来应用。

2024-06-16 04:30:00 973

原创 Qt Widget Z-Order理解

QWidget的视觉Z-Order可以通过stackUnder、lower、raise三个函数来修改初始化的Z-Order和添加child Widget的先后有关。

2024-06-16 04:00:00 359

原创 TF-IDF算法详细介绍

TF-IDF算法作为一种经典的特征提取方法,在信息检索和文本挖掘中发挥着重要作用。尽管存在一些局限性,但其简单有效的特点使其在许多应用场景中得到了广泛应用。随着自然语言处理技术的发展,TF-IDF仍然是理解和处理文本数据的重要工具。n_d。

2024-06-15 04:30:00 699

原创 Qt qInstallMessageHandler(自定义消息处理)

break;break;break;break;break;// 安装消息处理程序// 打印信息输出:从上面示例看出我们可以去规范输出的格式,那么我们能不能决定输出的地方呢?比如直接输出到文件中?break;break;break;break;break;// 输出字符串格式化// 读写文件// 安装消息处理程序// 打印信息输出:注意:文件每次调用都要open和close。

2024-06-15 04:00:00 348

原创 Qt QMake指南(如何写pro文件)

QMake是一个通过编译Pro文件自动生成Makefile文件的工具。

2024-06-14 15:29:24 705

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除