题目描述
一条单向的铁路线上,依次有编号为 1, 2, ..., n 的 n 个火车站。每个火车站都有一个级别,最低为 1 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车 次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注 意:起始站和终点站自然也算作事先已知需要停靠的站点)
例如,下表是 5 趟车次的运行情况。其中,前 4 趟车次均满足要求,而第 5 趟车次由于 停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要求。
现有 m 趟车次的运行情况(全部满足要求),试推算这 n 个火车站至少分为几个不同的级别。
输入
第一行包含 2 个正整数 n, m,用一个空格隔开。
第 i + 1 行(1 ≤ i ≤ m)中,首先是一个正整数 si(2 ≤ si ≤ n),表示第 i 趟车次有 si 个停靠站;接下来有 si 个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个 空格隔开。输入保证所有的车次都满足要求。
输出
输出只有一行,包含一个正整数,即 n 个火车站最少划分的级别数。
样例输入
样例输出
提示
【数据范围】
对于 20%的数据,1 ≤ n, m ≤ 10;
对于 50%的数据,1 ≤ n, m ≤ 100;
对于 100%的数据,1 ≤ n, m ≤ 1000。
一道NOIP的题,也是一道经典的拓扑排序。
题意:有n个火车站,有m趟车,第i趟车有si个停靠站从小到大排列。
如果这趟车 次停靠了火车站x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注 意:起始站和终点站自然也算作事先已知需要停靠的站点),问这n个火车站至少分为几个不同的级别。
解法:红字中可以很明显地想到拓扑排序,将停靠的和不停靠的火车站建边,再做拓扑排序,层数即为至少要分的级别数。
此题用层次宽搜更加清晰,而且统计入度为0的点的过程在修改的时候统计。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int t,len,p1,p2,p3,ans;
int a[10000],b[10000],mat[1005][1005],ind[10000],q[1000000];
bool flag[10000];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d",&t);
for(int j=1;j<=t;j++){
scanf("%d",&a[j]);
flag[a[j]]=true;
}
len=0;
for(int j=a[1];j<=a[t];j++)
if(!flag[j]) b[++len]=j;
else flag[j]=false;
for(int j=1;j<=t;j++)
for(int k=1;k<=len;k++) mat[a[j]][b[k]]=1;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(mat[i][j]) ind[j]++;
p1=1;p2=0;
for(int i=1;i<=n;i++)
if(!ind[i]) q[++p2]=i;
while(p1<=p2){
p3=p2;
for(int i=p1;i<=p3;i++)
for(int j=1;j<=n;j++)
if(mat[q[i]][j]){
ind[j]--;
if(!ind[j]) q[++p2]=j;
}
p1=p3+1;ans++;
}
printf("%d\n",ans);
return 0;
}