NOIP2013 车站分级

题目描述

一条单向的铁路线上,依次有编号为 1, 2, ..., n 的 个火车站。每个火车站都有一个级别,最低为 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车 次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 的都必须停靠。(注 意:起始站和终点站自然也算作事先已知需要停靠的站点)

例如,下表是 趟车次的运行情况。其中,前 趟车次均满足要求,而第 趟车次由于 停靠了 号火车站(级)却未停靠途经的 号火车站(亦为 级)而不满足要求。 

现有 趟车次的运行情况(全部满足要求),试推算这 个火车站至少分为几个不同的级别。

输入

第一行包含 个正整数 nm,用一个空格隔开。
第 
+ 1 行(1 ≤ ≤ m)中,首先是一个正整数 si(2 ≤ s≤ n),表示第 趟车次有 s个停靠站;接下来有 s个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个 空格隔开。输入保证所有的车次都满足要求。 

输出

输出只有一行,包含一个正整数,即 个火车站最少划分的级别数。 

样例输入

9 2
4 1 3 5 6
3 3 5 6

9 3
4 1 3 5 6
3 3 5 6
3 1 5 9

样例输出

2
3

提示





【数据范围】

对于 
20%的数据,1 ≤ n≤ 10


对于 50%的数据,1 ≤ n≤ 100


对于 100%的数据,1 ≤ n≤ 1000。 


一道NOIP的题,也是一道经典的拓扑排序。

题意:有n个火车站,有m趟车,第i趟车有si个停靠站从小到大排列。

如果这趟车 次停靠了火车站x,则始发站、终点站之间所有级别大于等于火车站 的都必须停靠。(注 意:起始站和终点站自然也算作事先已知需要停靠的站点),问这n个火车站至少分为几个不同的级别。


解法:红字中可以很明显地想到拓扑排序,将停靠的和不停靠的火车站建边,再做拓扑排序,层数即为至少要分的级别数。

此题用层次宽搜更加清晰,而且统计入度为0的点的过程在修改的时候统计。


#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int t,len,p1,p2,p3,ans;
int a[10000],b[10000],mat[1005][1005],ind[10000],q[1000000];
bool flag[10000];
int main()
{
	int n,m;
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++){
		scanf("%d",&t);
		for(int j=1;j<=t;j++){
			scanf("%d",&a[j]);
			flag[a[j]]=true;
		}
		len=0;
		for(int j=a[1];j<=a[t];j++)
			if(!flag[j]) b[++len]=j;
			else flag[j]=false;
		for(int j=1;j<=t;j++)
			for(int k=1;k<=len;k++) mat[a[j]][b[k]]=1;
	}
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
			if(mat[i][j]) ind[j]++;
	p1=1;p2=0;
	for(int i=1;i<=n;i++)
		if(!ind[i]) q[++p2]=i;
	while(p1<=p2){
		p3=p2;
		for(int i=p1;i<=p3;i++)
			for(int j=1;j<=n;j++)
				if(mat[q[i]][j]){
					ind[j]--;
					if(!ind[j]) q[++p2]=j;
				}
		p1=p3+1;ans++;
	}
	printf("%d\n",ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值