很妙的dp,状态设出来了方程没推出来(博主果然菜)
设f[i][j]表示前i个数第一个数为[1,j]且第一个数降序的方案数,然后有f[i][j]=f[i][j-1]+f[i-1][i-j]
解释一下,我们显然知道f[i][j-1](前i个数第一个数为[1,j-1]且第一个数降序的方案数),那么只要求前i个数第一个数为j且第一个数降序的方案数,考虑第1个数为j且降序则第二个数小于j,即求前i-1个数第一个数为[1,j-1]且第一个数升序的方案数,很显然这个是对称的,即求第一个数为[1,(i-1)-(j-1)]且第一个数降序的方案数。
(我当时设了两个状态数组一个升序,一个降序,应该可以做,但是我太弱了调不对)
注意:要用循环数组bzoj会卡的!!n=1的情况要考虑!!
代码:
#include<iostream>
#include<stdio.h>
using namespace std;
int f[3][4205];
int main()
{
int n,k,c;
scanf("%d%d",&n,&k);
f[1][1]=1;
for(int i=2;i<=n;i++)
{
c=i&1;
for(int j=1;j<=n;j++)
f[c][j]=(f[c][j-1]+f[1-c][i-j])%k;
}
printf("%d",(n==1)?1:2*f[c][n]%k);
return 0;
}
DP算法精妙应用

本文介绍了一种使用DP算法解决特定问题的方法。定义状态f[i][j]为前i个数中第一个数范围为[1,j]且第一个数降序的方案数。通过递推公式f[i][j]=f[i][j-1]+f[i-1][i-j]来解决问题,该公式巧妙地利用了对称性。文章最后给出了完整的C++代码实现。
560

被折叠的 条评论
为什么被折叠?



