【HDU3445】The Diary of Math Teacher —— 斯特林数

版权声明:本文为博主原创文章,转载请注明源网址blog.csdn.net/leo_h1104 https://blog.csdn.net/Leo_h1104/article/details/80766876

打一波脸,以为学完OI就不更了结果转眼更了两篇

暴力

n的范围是支持n2的,可以暴力出奇迹吗
如果你会在任意模数下求k!的逆元,那么请上

正解

容易注意到f(x)的给出形式是一个n次多项式,括号内的数每增加一次相当于对相邻位置的函数值进行一次差分。
我们尝试对f(x)进行一次差分,看看能不能找出一些规律
f(x+1)f(x)=i=1n(x+ai+1)i=1n(x+ai)
令S为ai的集合,上式=SS(tS(x+t))
理解的话,以x+ai为整体把括号展开,每一次可以选1也可以选整体,再减去所有都取整体的情况,相当于是取了所有可能的真子集,把真子集中的数作积,再把不同的选择作和
那么k次差分后,对于一个m个(x+ai)相乘的项,系数是从n个元素的集合中每次删去一些元素,剩下m个的方案数
也就是说,把(n-m)个数分到k个不同集合中,每个集合中至少有一个数
相当于把(n-m)个数分成k个集合,再把答案乘以k!,而题目恰好要求差分结果除以k!。
我们设S(i,j)为把i个数分为j个集合的方案数
其实S(i,j)就是第二类斯特林数,百度一下可以找到
存在递推公式S(i,j)==S(i-1,j-1)+j*S(i-1,j)
理解:看第i个元素是新建一个集合还是放在j个集合中的哪一个
而所有m个(x+ai)相乘得到的项的和也是可以递推得到的
于是这道题就可做了

代码

#include<cstdio>
#include<cstring>
#define maxn 1004
int n,k,p;
int a[maxn];
int f[maxn];
int s[maxn][maxn];
int main()
{
    scanf("%d%d%d",&n,&k,&p);
    while(n|k|p)
    {
        memset(s,0,sizeof(s));
        memset(f,0,sizeof(f));
        int ans=0;
        for(int i=1;i<=n;i++)
            scanf("%d",a+i);
        s[1][1]=1;
        for(int i=2;i<=n;i++)
            for(int j=1;j<=i;j++)
                s[i][j]=(s[i-1][j-1]+j*s[i-1][j])%p;
        f[0]=1;
        for(int i=1;i<=n;i++)
            for(int j=i;j;j--)
                f[j]=(f[j]+f[j-1]*a[i])%p;
        for(int i=0;i<=n-k;i++)
            ans=(ans+f[i]*s[n-i][k])%p;
        printf("%d\n",ans);
        scanf("%d%d%d",&n,&k,&p);
    }
}
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页