缓存分析

缓存

首页的访问量非常大,而首页中的商品类目访问量更大,鼠标移动就在访问,查询所有的数据,如果每次访问都实时到数据库获取数据,数据库的访问压力太大。

而这些信息一般更新的频率比较低,短时间内不会发生改变。因此,我们可以考虑在前台系统中,增加一层缓存,把这些数据缓存起来,请求到来时,不再调用数据接口,而是直接读取缓存中的数据。

这样就能大大减少首页分类加载所需时间,提高并发性能。

 

加不加缓存的标准:

  1. 变化频率低

  2. 访问频繁

实现:使用Redis实现缓存。

 

如何实现

  1. 先读缓存,缓存有,直接返回。

  2. 缓存没有,再读数据库

写:

  1. 双写模式:写数据库,写缓存

  2. 失效模式:缓存失效(删除缓存),写数据库

读取缓存步骤数据一致性一般没有什么问题,但是一旦涉及到数据更新:数据库和缓存更新,就容易出现缓存(Redis)和数据库(MySQL)间的数据一致性问题

不管先保存到MySQL,还是先保存到Redis都面临着一个保存成功而另外一个保存失败的情况。

不管是先写MySQL数据库,再删除Redis缓存;还是先删除缓存,再写库,都有可能出现数据不一致的情况。举一个例子:

1.如果删除了缓存Redis,还没有来得及写库MySQL,另一个线程就来读取,发现缓存为空,则去数据库中读取数据写入缓存,此时缓存中为脏数据。

2.如果先写了库,在删除缓存前,写库的线程宕机了,没有删除掉缓存,则也会出现数据不一致情况。

因为写和读是并发的,没法保证顺序,就会出现缓存和数据库的数据不一致的问题。

 

解决:

  1. 基于mysql的binlog日志(canal)

  2. 消息队列

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读