豆包、Kimi 以及类似的 AI 服务,通常都是通过以下步骤实现 PDF 和图片处理的:
1. 典型流程
- 文件上传:
- 用户上传 PDF 或图片文件。
- 文件解析:
- 对于文本型 PDF,使用 PDF 解析库(如 PyMuPDF)直接提取文字。
- 对于图像型 PDF 或图片,使用 OCR 工具(如 Tesseract、PaddleOCR)提取文字。
- 文本处理:
- 将提取的文字传递给 AI 模型(如 DeepSeek、GPT 等)进行处理。
- 结果返回:
- AI 模型生成摘要、回答问题或执行其他任务,并将结果返回给用户。
2. 具体实现细节
以下是更详细的实现步骤,帮助您理解整个流程:
步骤 1:文件上传
- 用户通过前端界面(如网页或 App)上传文件。
- 文件被传输到服务端进行处理。
步骤 2:文件解析
-
文本型 PDF:
- 使用 PDF 解析库(如 PyMuPDF、PyPDF2)直接提取文字。
- 示例代码:
import fitz # PyMuPDF def extract_text_from_pdf(pdf_path): pdf_document = fitz.open(pdf_path) text = "" for page_num in range(len(pdf_document)): page = pdf_document.load_page(page_num) text += page.get_text() return text
-
图像型 PDF 或图片:
- 使用 OCR 工具(如 PaddleOCR、Tesseract)提取文字。
- 示例代码:
from paddleocr import PaddleOCR def extract_text_from_image(image_path): ocr = PaddleOCR(use_angle_cls=True, lang="ch") result = ocr.ocr(image_path, cls=True) text = "\n".join([line[1][0] for line in result[0]]) return text
步骤 3:文本处理
- 将提取的文字传递给 AI 模型进行处理。
- 示例代码:
import requests def call_ai_model(text): url = "https://api.example.com/ai" # AI 服务的 API 地址 payload = { "text": text, "task": "summarize" # 任务类型(如摘要、问答等) } response = requests.post(url, json=payload) return response.json()["result"]
步骤 4:结果返回
- 将 AI 模型生成的结果返回给用户。
- 示例代码:
def return_result_to_user(result): print("处理结果:", result)
3. 优化与扩展
在实际应用中,豆包和 Kimi 等服务可能会对上述流程进行优化和扩展,例如:
- 多语言支持:根据用户需求切换 OCR 工具的语言模型。
- 缓存机制:对重复文件进行缓存,避免重复处理。
- 批量处理:支持批量上传文件并并行处理。
- 多模态支持:结合图像和文本信息,使用多模态模型(如 CLIP、BLIP)增强理解能力。
4. 示例:完整流程代码
以下是一个完整的示例代码,展示如何实现从文件上传到 AI 处理的流程:
import fitz # PyMuPDF
from paddleocr import PaddleOCR
import requests
# 初始化 PaddleOCR
ocr = PaddleOCR(use_angle_cls=True, lang="ch")
def extract_text_from_pdf(pdf_path):
# 打开 PDF 文件
pdf_document = fitz.open(pdf_path)
text = ""
# 遍历每一页
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
page_text = page.get_text()
if page_text.strip(): # 如果是文本型 PDF
text += page_text
else: # 如果是图像型 PDF,使用 OCR
pix = page.get_pixmap()
image_path = f"page_{page_num + 1}.png"
pix.save(image_path)
result = ocr.ocr(image_path, cls=True)
page_text = "\n".join([line[1][0] for line in result[0]])
text += page_text
return text
def extract_text_from_image(image_path):
# 调用 PaddleOCR 识别图片中的文字
result = ocr.ocr(image_path, cls=True)
text = "\n".join([line[1][0] for line in result[0]])
return text
def call_ai_model(text):
url = "https://api.example.com/ai" # AI 服务的 API 地址
payload = {
"text": text,
"task": "summarize" # 任务类型(如摘要、问答等)
}
response = requests.post(url, json=payload)
return response.json()["result"]
def process_file(file_path):
if file_path.endswith(".pdf"):
text = extract_text_from_pdf(file_path)
elif file_path.endswith((".jpg", ".png", ".jpeg")):
text = extract_text_from_image(file_path)
else:
raise ValueError("不支持的文件格式")
result = call_ai_model(text)
return result
# 示例:处理文件
file_path = "example.pdf" # 或 "example.jpg"
result = process_file(file_path)
print("处理结果:", result)
5. 总结
豆包和 Kimi 等服务的核心流程确实是:
- 文件上传:用户上传文件。
- 文件解析:使用 PDF 解析库或 OCR 工具提取文字。
- 文本处理:将提取的文字传递给 AI 模型进行处理。
- 结果返回:将处理结果返回给用户。
这种流程结合了 OCR 技术和 AI 模型的优势,能够高效地处理 PDF 和图片文件。