从PDF中提取关键部分(如合同正文)并去除无关内容

要从PDF中提取关键部分(如合同正文)并去除无关内容(如页眉、页脚、目录等),可以通过以下方法优化代码:


1. PDF文本结构分析

  • PDF文件通常包含页眉、页脚、目录等无关内容,这些内容通常位于页面的顶部或底部,或者有固定的格式(如特定的字体、字号或位置)。
  • 通过分析PDF的文本结构(如文本块的位置、字体信息等),可以识别并去除无关内容。

2. 优化方法

  • 使用 PyMuPDF 的文本块信息
    • PyMuPDFget_text("blocks")get_text("dict") 方法可以提取文本块及其位置信息。
    • 通过分析文本块的位置(如Y坐标),可以过滤掉页眉和页脚。
  • 正则表达式过滤
    • 使用正则表达式去除特定的无关内容(如页码、页眉关键词等)。
  • 手动定义关键部分
    • 如果合同正文有固定的起始和结束标志(如“合同正文”和“签字页”),可以通过这些标志提取关键部分。

3. 优化代码

以下是优化后的代码,实现了从PDF中提取关键部分并去除无关内容的功能:

import fitz  # PyMuPDF
import re

def pdf_to_text(pdf_path):
    """解析PDF文件并返回清理后的文本内容"""
    text = ""
    try:
        doc = fitz.open(pdf_path)
        for page_num in range(len(doc)):
            page = doc.load_page(page_num)
            blocks = page.get_text("blocks")  # 获取文本块及其位置信息
            for block in blocks:
                x0, y0, x1, y1, block_text, block_no, block_type = block
                # 过滤掉页眉和页脚(通常位于页面顶部和底部)
                if y0 > 50 and y1 < page.rect.height - 50:  # 调整阈值以匹配具体PDF
                    text += block_text + "\n"
        return text
    except Exception as e:
        print(f"解析 PDF 文件时出错: {e}")
        return None

def clean_text(text):
    """清理文本,去除无关内容"""
    if text:
        # 去除页码(如“第1页”)
        text = re.sub(r'第[0-9]+页', '', text)
        # 去除多余的空白字符
        text = re.sub(r'\s+', ' ', text)
        text = text.strip()
    return text

def extract_key_section(text, start_marker, end_marker):
    """提取关键部分(如合同正文)"""
    if text:
        start_index = text.find(start_marker)
        end_index = text.find(end_marker)
        if start_index != -1 and end_index != -1:
            return text[start_index:end_index + len(end_marker)]
    return text  # 如果未找到标志,返回全部文本

# 示例PDF路径
pdf_path = r"C:\Users\leon\Desktop\断点续传\python_learn\2025\20250308\ollama\pdf\刑事诉讼合同(辩护人).pdf"

# 解析PDF并提取文本
pdf_text = pdf_to_text(pdf_path)
if pdf_text:
    print("原始文本:", pdf_text[:1000])  # 打印前1000字符检查

    # 清理文本
    cleaned_text = clean_text(pdf_text)
    print("清理后文本:", cleaned_text[:1000])  # 打印前1000字符检查

    # 提取关键部分(如合同正文)
    start_marker = "风险代理清收协议"  # 合同正文起始标志
    end_marker = "本页为股份有限公司重庆分行与上海锦天城(重庆)律师事务所"  # 合同正文结束标志
    key_section = extract_key_section(cleaned_text, start_marker, end_marker)
    if key_section:
        print("关键部分:", key_section[:1000])  # 打印前1000字符检查
    else:
        print("未找到关键部分")
else:
    print("PDF解析失败")

4. 代码说明

  1. pdf_to_text 函数

    • 使用 get_text("blocks") 提取文本块及其位置信息。
    • 通过Y坐标过滤掉页眉(y0 < 50)和页脚(y1 > page.rect.height - 50)。
  2. clean_text 函数

    • 使用正则表达式去除页码和多余的空白字符。
  3. extract_key_section 函数

    • 根据起始和结束标志提取关键部分(如合同正文)。
  4. 调试输出

    • 打印解析后的文本、清理后的文本和关键部分,方便调试。

5. 测试与调整

  • 调整过滤阈值
    • 如果页眉或页脚的位置不同,可以调整 y0 > 50y1 < page.rect.height - 50 中的阈值。
  • 调整起始和结束标志
    • 根据具体合同内容,调整 start_markerend_marker 的值。

6. 总结

通过分析PDF的文本块位置和使用正则表达式,可以有效去除无关内容并提取关键部分。如果PDF格式复杂,可以进一步优化过滤规则或结合OCR技术处理扫描版PDF。希望这段代码能帮助你解决问题!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值