要从PDF中提取关键部分(如合同正文)并去除无关内容(如页眉、页脚、目录等),可以通过以下方法优化代码:
1. PDF文本结构分析
- PDF文件通常包含页眉、页脚、目录等无关内容,这些内容通常位于页面的顶部或底部,或者有固定的格式(如特定的字体、字号或位置)。
- 通过分析PDF的文本结构(如文本块的位置、字体信息等),可以识别并去除无关内容。
2. 优化方法
- 使用
PyMuPDF
的文本块信息:PyMuPDF
的get_text("blocks")
或get_text("dict")
方法可以提取文本块及其位置信息。- 通过分析文本块的位置(如Y坐标),可以过滤掉页眉和页脚。
- 正则表达式过滤:
- 使用正则表达式去除特定的无关内容(如页码、页眉关键词等)。
- 手动定义关键部分:
- 如果合同正文有固定的起始和结束标志(如“合同正文”和“签字页”),可以通过这些标志提取关键部分。
3. 优化代码
以下是优化后的代码,实现了从PDF中提取关键部分并去除无关内容的功能:
import fitz # PyMuPDF
import re
def pdf_to_text(pdf_path):
"""解析PDF文件并返回清理后的文本内容"""
text = ""
try:
doc = fitz.open(pdf_path)
for page_num in range(len(doc)):
page = doc.load_page(page_num)
blocks = page.get_text("blocks") # 获取文本块及其位置信息
for block in blocks:
x0, y0, x1, y1, block_text, block_no, block_type = block
# 过滤掉页眉和页脚(通常位于页面顶部和底部)
if y0 > 50 and y1 < page.rect.height - 50: # 调整阈值以匹配具体PDF
text += block_text + "\n"
return text
except Exception as e:
print(f"解析 PDF 文件时出错: {e}")
return None
def clean_text(text):
"""清理文本,去除无关内容"""
if text:
# 去除页码(如“第1页”)
text = re.sub(r'第[0-9]+页', '', text)
# 去除多余的空白字符
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text
def extract_key_section(text, start_marker, end_marker):
"""提取关键部分(如合同正文)"""
if text:
start_index = text.find(start_marker)
end_index = text.find(end_marker)
if start_index != -1 and end_index != -1:
return text[start_index:end_index + len(end_marker)]
return text # 如果未找到标志,返回全部文本
# 示例PDF路径
pdf_path = r"C:\Users\leon\Desktop\断点续传\python_learn\2025\20250308\ollama\pdf\刑事诉讼合同(辩护人).pdf"
# 解析PDF并提取文本
pdf_text = pdf_to_text(pdf_path)
if pdf_text:
print("原始文本:", pdf_text[:1000]) # 打印前1000字符检查
# 清理文本
cleaned_text = clean_text(pdf_text)
print("清理后文本:", cleaned_text[:1000]) # 打印前1000字符检查
# 提取关键部分(如合同正文)
start_marker = "风险代理清收协议" # 合同正文起始标志
end_marker = "本页为股份有限公司重庆分行与上海锦天城(重庆)律师事务所" # 合同正文结束标志
key_section = extract_key_section(cleaned_text, start_marker, end_marker)
if key_section:
print("关键部分:", key_section[:1000]) # 打印前1000字符检查
else:
print("未找到关键部分")
else:
print("PDF解析失败")
4. 代码说明
-
pdf_to_text
函数:- 使用
get_text("blocks")
提取文本块及其位置信息。 - 通过Y坐标过滤掉页眉(
y0 < 50
)和页脚(y1 > page.rect.height - 50
)。
- 使用
-
clean_text
函数:- 使用正则表达式去除页码和多余的空白字符。
-
extract_key_section
函数:- 根据起始和结束标志提取关键部分(如合同正文)。
-
调试输出:
- 打印解析后的文本、清理后的文本和关键部分,方便调试。
5. 测试与调整
- 调整过滤阈值:
- 如果页眉或页脚的位置不同,可以调整
y0 > 50
和y1 < page.rect.height - 50
中的阈值。
- 如果页眉或页脚的位置不同,可以调整
- 调整起始和结束标志:
- 根据具体合同内容,调整
start_marker
和end_marker
的值。
- 根据具体合同内容,调整
6. 总结
通过分析PDF的文本块位置和使用正则表达式,可以有效去除无关内容并提取关键部分。如果PDF格式复杂,可以进一步优化过滤规则或结合OCR技术处理扫描版PDF。希望这段代码能帮助你解决问题!