search_kwargs 是一个用于配置检索行为的参数

在 LangChain 的 RetrievalQA 中,search_kwargs 是一个用于配置检索行为的参数。search_kwargs={"k": 3} 表示在检索时,向量数据库会返回与用户问题最相关的 前 3 个文档块。以下是对 search_kwargs={"k": 3} 的详细解释:


1. search_kwargs 的作用

search_kwargs 是一个字典,用于向向量数据库传递检索时的配置参数。它的具体内容取决于所使用的向量数据库(如 Milvus、Weaviate、Chroma 等),但通常包括以下常见的参数:

  • k:指定返回的文档块数量。
  • filter:用于过滤文档块的元数据条件。
  • score_threshold:设置相似度分数的阈值,只返回分数高于阈值的文档块。

search_kwargs={"k": 3} 中,k 是核心参数,表示返回的文档块数量。


2. k=3 的含义

  • k=3 表示向量数据库会检索出与用户问题最相关的 3 个文档块
  • 这些文档块是根据它们的嵌入向量与问题嵌入向量的相似度排序的,相似度最高的文档块会排在前面。

3. 检索过程

  1. 用户提出问题:例如,“关于公司法律条款的解释”。
  2. 生成问题的嵌入向量:使用嵌入模型(如 NomicEmbedText)将问题转换为向量。
  3. 检索相关文档块
    • 向量数据库会计算问题向量与所有文档块向量的相似度。
    • 返回相似度最高的前 3 个文档块。
  4. 处理文档块
    • 根据 chain_type 的设置(如 stuffmap_reduce 等),将检索到的文档块传递给 LLM 生成答案。

4. 示例

假设向量数据库中存储了以下文档块:

  1. “公司法律条款规定…”
  2. “根据公司法第12条…”
  3. “公司法的适用范围包括…”
  4. “公司法的法律责任…”
  5. “公司法的修订历史…”

当用户提出问题时,向量数据库会返回相似度最高的 3 个文档块。例如:

  • 文档块 1:相似度 0.95
  • 文档块 2:相似度 0.92
  • 文档块 3:相似度 0.90

这些文档块会被传递给 LLM 生成答案。


5. 调整 k 的影响

  • k 较小(如 k=1):
    • 优点:检索速度更快,生成的答案更简洁。
    • 缺点:可能会遗漏一些相关信息,导致答案不完整。
  • k 较大(如 k=10):
    • 优点:可以获取更多相关信息,生成的答案更全面。
    • 缺点:检索速度较慢,生成的答案可能包含冗余信息。

选择合适的 k 值需要在检索速度和答案质量之间进行权衡。


6. 结合其他参数

search_kwargs 还可以结合其他参数实现更复杂的检索逻辑。例如:

  • 按元数据过滤
    search_kwargs={"k": 3, "filter": {"category": "legal"}}
    
    表示只检索 categorylegal 的文档块,并返回前 3 个。
  • 设置相似度阈值
    search_kwargs={"k": 3, "score_threshold": 0.8}
    
    表示只返回相似度分数高于 0.8 的文档块。

7. 代码示例

以下是一个完整的示例,展示了如何使用 search_kwargs={"k": 3}

from langchain.chains import RetrievalQA
from langchain.llms import Ollama
from langchain.vectorstores import Milvus

# 设置 RAG 管道
def setup_rag_pipeline(vector_store):
    llm = Ollama(model="deepseek-r1:1.5b", base_url="http://127.0.0.1:11434")
    qa_pipeline = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",  # 使用 "stuff" 处理文档块
        retriever=vector_store.as_retriever(search_kwargs={"k": 3})  # 检索前 3 个相关文档块
    )
    return qa_pipeline

总结

  • search_kwargs={"k": 3} 表示检索与用户问题最相关的 3 个文档块。
  • k 的值影响检索结果的数量和质量,需要根据实际需求进行调整。
  • search_kwargs 还可以结合其他参数(如 filterscore_threshold)实现更复杂的检索逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值