二维图形的几何变换

1、基本的二维几何变换和矩阵表示

1.1平移变换

将平移距离translation distance)tx和ty加到原始坐标(x,y)上获得一个新的坐标位置,可以实现一个二维位置的平移


方程1

一对平移距离称为平移向量(translation vector)或位移向量(shift vector)。

矩阵表示


方程2

使用矩阵形式来表示二维平移方程:


方程3


图1


1.2二维旋转变换

一个对象的二位旋转通过在xy平面上沿圆路径将对象重新定位来实现。二维旋转的参数有旋转角和旋转点(rotation point)的位置


图2


为了简化该基本方法的叙述,我们首先确定当基准点为坐标原点时进行旋转的变换方程。原始点和变换后的点的位置的角度关系如下图所示:


图3

应用标准的三角等式,我们利用角度将转换后的坐标表示为:


方程4

在极坐标中,点的原始位置为:


方程5

结合上述表达式,我们得到相对于原点,将位置(x,y)的点旋转角的变换方程:


方程6

使用列向量表达式表示坐标位置,那么旋转方程的矩阵形式为:


方程7

其中旋转矩阵为:


方程8

下面给出绕任意基准点旋转的例子,利用图中的三角关系,可以将方程6规范化为绕任意指定的基准点旋转的变换方程:


方程9


二维缩放变换

一个简单的二维缩放操作可通过将缩放系数(scaling factor)与对象坐标位置(x,y)相乘而得:


方程10

缩放系数在x方向缩放对象,而在y方向上进行缩放。基本的二维缩放方程10页可以写成矩阵形式:

方程11

或者


方程12

时,使用方程12缩放,线段的尺寸、位置改变,想左边原点移动:


图4

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值