python数据分析报告+代码,python数据分析报告 范文

大家好,小编为大家解答python数据分析期末大作业报告的问题。很多人还不知道python数据分析期末大作业,现在让我们一起来看看吧!

题目一——线性代数计算

1.创建一个Python脚本,命名为test1.py,完成以下功能。

(1)生成两个3×3矩阵,并计算矩阵的乘积怎么样用python绘制满天星

(2)求矩阵A=-110-430102 的特征值和特征向量。

(3)设有矩阵A=521201 ,试对其进行奇异分解。

求解过程
import numpy as np
mat1 = np.matrix([[3,6,9],[7,8,10],[11,15,19]])
mat2 = np.matrix([[1,2,3],[6,9,10],[12,13,15]])
mat3 = mat1 * mat2
print(mat3)
mat4 = np.matrix([[-1,1,0],[-4,3,0],[1,0,2]])
mat4_value, mat4_vector = np.linalg.eig(mat4)
print('特征值为:',mat4_value)
print('特征向量为:',mat4_vector)
mat5 = np.matrix([[5,2,1],[2,0,1]])
U, Sigma, V = np.linalg.svd(mat5, full_matrices=False)

题目二——线性回归预测

2.油气藏的储量密度Y与生油门限以下平均地温梯度X1、生油门限以下总有机碳百分比X2、生油岩体积与沉积岩体积百分比X3、砂泥岩厚度百分比X4、有机转化率X5有关,数据数据集(datat11)。根据数据集信息完成如下任务:

(1)利用线性回归分析命令,求出Y与5个因素之间的线性回归关系式系数向量(包括常数项),并在命令窗口输出该系数向量。

(2)求出线性回归关系的判定系数。

(3)今有一个样本X1=3.5,X2=1.8,X3=8,X4=17,X5=10,试预测该样本的Y值。

油气存储特征数据
X1 X2 X3 X4 X5 Y
3.18 1.15 9.4 17.6 3 0.7
3.8 0.79 5.1 30.5 3.8 0.7
3.6 1.1 9.2 9.1 3.65 1
2.73 0.73 14.5 12.8 4.68 1.1
3.4 1.48 7.6 16.5 4.5 1.5
3.2 1 10.8 10.1 8.1 2.6
2.6 0.61 7.3 16.1 16.16 2.7
4.1 2.3 3.7 17.8 6.7 3.1
3.72 1.94 9.9 36.1 4.1 6.1
4.1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值