【树形dp】5.6 Week8 移动棋子

题目大意:

你有一棵 n 个点的有根树,每条边都是带权的,其中 1 号点是这棵树的根。你开始你把一个棋子放在 1 号点
位置。接下来你可以做如下的事情:
• 将这个棋子移向它的某个儿子。代价为这条边的权值。
• 将这个棋子跳回 1 号节点。这个操作不需要任何代价。
• 在这个棋子所在的位置设立存档点。注意你只能在整棵树上设立一个存档点,如果之前在某个节点上设立过
存档点,那么原来的存档点会消失。这个操作不需要任何代价。
• 将棋子跳回到设立的存档点。这个操作不需要任何代价。

你想要访问每个节点至少一次,问最小的代价是多少。


首先可以想到是个树状dp,但是怎么设状态和转移方法实在是太难想了。本来以为每个子节点状态要分设不设存档点讨论,其实不用。

dp[x]表示x的子树,在x处设一个存档点(最终操作完成后存档点落到x或是他的任意一个子节点无所谓),将整个子树都遍历一遍(最后一步走到哪里无所谓,反正都要跳回1再走到x的father)的最小代价。

转移的确是神仙操作。对于每个节点,它的子节点y对应子树有三种遍历方法

1:存档点始终在x不动

2:存档点下推到y,这样的话最后走完所有节点后,直接跳回1,再从1走到x(再次走到x时肯定贪心设存档点),产生一个多余代价

3:可以发现最终存档点落到哪里无所谓,所以遍历最后一个子树时,可以在最后一个子树中把存档点下推下去,而不用加上再从1号点到x的额外代价,设这个子树为特殊子树

#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long
using namespace std;
int n,h[2020],m1;
struct edge{
	int next,to;
	LL val;
	void Add(int N,int T,LL v){
		next=N; to=T; val=v;
	}
}q[2020];
LL dep[2020],dp[2020],sum_dis[2020],sum_lv[2020];
LL Min(LL a,LL b){
	if (a<b) return a; return b;
}
void Add(){
	int x,y;
	LL Val;
	scanf("%d %d %lld",&x,&y,&Val);
	q[++m1].Add(h[x],y,Val); h[x]=m1;
	q[++m1].Add(h[y],x,Val); h[y]=m1;
}
void Dfs(int x,int fa){
	int i,y;
	bool lv=1;
	for (i=h[x];i;i=q[i].next){
		y=q[i].to; 
		if (y==fa) continue;
		lv=0;
		dep[y]=dep[x]+q[i].val;
		Dfs(y,x);
		sum_lv[x]+=sum_lv[y];
		sum_dis[x]+=sum_dis[y];
	}
	if (lv){
		sum_dis[x]=dep[x];
		sum_lv[x]=1;
	}
}
void Dp(int x,int fa){
	int i,y;
	LL k=0,k1,k2;
	for (i=h[x];i;i=q[i].next){
		y=q[i].to;
		if (y==fa) continue;
		Dp(y,x);
		k1=sum_dis[y]-dep[x]*sum_lv[y]; 
		//存档点不动,两个sum简化求子树各个叶子到x距离 
		k2=dep[y]+dp[y];
		//存档点推下去再走回x 
		k2=Min(k1,k2);
		dp[x]+=k2; 
		k=Min(k,dp[y]+q[i].val-k2); 
		//把一个子树改造成特殊子树能减小的最大代价 
	}
	dp[x]+=k;
}
void Work(){
	scanf("%d",&n); m1=0;
	memset(dp,0,sizeof(dp)); memset(dep,0,sizeof(dep));
	memset(sum_dis,0,sizeof(sum_dis));
	memset(sum_lv,0,sizeof(sum_lv));
	memset(h,0,sizeof(h)); memset(q,0,sizeof(q));
	
	int i;
	for (i=1;i<n;i++) Add();
	Dfs(1,0); 
	Dp(1,0);
	cout<<dp[1]<<endl;
}
int main(){
	int num; cin>>num;
	while (num--) Work();
} 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值