自然语言处理 Task6 基于深度学习的文本分类3

Task6 基于深度学习的文本分类3

变压器原理

Transformer是在“ Attention is All You Need ”中提出的,模型的编码部分是一组编码器的堆叠(论文中依次插入六个编码器),模型的解码部分是由相同数量的解码器的堆叠。
在这里插入图片描述
我们重点关注编码部分。它们结构完全相同,但是并不共享参数,每一个编码器都可以拆解成两部分。在对输入序列做词的矢量化之后,它们首先流过一个self-attention层,该层帮助编码器在它编码单词的时候能够看到输入序列中的其他单词。self-attention的输出流向一个前向网络(Feed Forward Neural Network),每个输入位置对应的前向网络是独立互不干扰的。最后将输出预期下一个编码器。
在这里插入图片描述
这里能看到Transformer的一个关键特性,每个位置的词只是流过它自己的编码器路径。在自我关注层中,这些路径两两之间是相互依赖的。前向网络层则没有这些例外,但这些路径在流经前向网络时可以并行执行。
自注意中使用多头机制,从而不同的attention heads所关注的的部分不同。
在这里插入图片描述
编码“ it”时,一个注意力集中于“ the animal”,另一个头部集中于“ tired”,某种意义上讲,模型对“ it”的表达合成了的“ animal”和“ tired”其中。

对于自关注的详细计算,欢迎大家参考Jay Alammar关于Transformer的博客,这里不再展开。

另外,为了使模型保持单词的语言序,模型中添加了位置编码矢量。如下图所示,每行对应一个矢量的位置编码。因此,第一行将是我们要添加到输入序列中第一个单词的嵌入的向量。每行包含512个值—每个值都在1到-1之间。因为列是用sine函数生成,右边是用cosine生成,所以可以观察到中间显着的分隔。
在这里插入图片描述
编码器结构中值得提出注意的一个细节是,在每个子层中(FFNN),都有残差连接,并且紧跟着layer-normalization。如果我们可视化矢量和LayerNorm操作,将如下所示:
在这里插入图片描述

基于预训练语言模型的词表示

基于预训练语言模型的词表示可以通过建模的信息,而解决传统静态词向量不能建模“一词多义”语言现象的问题。最初提出的ELMo基于两个单向LSTM,可以左到而GPT用Transformer代替LSTM作为编码器,首先进行了语言模型预训练,然后在下游任务微调模型参数。但GPT仅仅为了解决以上问题,研究者们提出了BERT,BERT模型结构如下图所示,它是一个基于Transformer的多层编码器,通过执行分段预训练,靴子得到深层的某些表示。
在这里插入图片描述
传统方法生成的单词映射表的形式,即先为每个单词生成一个静态的词向量,之后这个单词的表示就被固定实际上,由于一词多义的语言现象,静态词向量是有很大的弊端的。以银行为例,如果训练语料的足够大,事先而当下游应用时,即使在新句子中,bank的本身里包含money等词,我们基本可以确定bank是“银行”的语义而不是在其他某些中的“河床”的语义,但由于静态词向量不能跟随其中而进行变化,所以银行的表示中还是面对着多种语义。为了解决这一问题,ELMo首先进行了语言模型预训练,然后在下游任务中动态调整字词嵌入,因此最后输出的词表示能够充分表达单词在某些中的特定语义,且解决一词多义的问题。

GPT来自于openai,是一种生成式预训练模型。GPT除了将ELMo中的LSTM替换为Transformer的Encoder外,更开创了NLP界基于预训练-微调的新范式。而GPT采用的也是和ELMo相同的两个阶段模式,但GPT在第一个阶段并没有采用ELMo中使用两个单向双层LSTM拼接的结构,而是采用基于自回归式的单向语言模型。

Google在NAACL 2018年发表的论文中提出了BERT,与GPT相同,BERT也采用了预训练-微调这一两阶段模式。但在模型结构方面,BERT采用了ELMO的范式,即使用双向语言模型代替GPT中的单向语言模型,但是BERT的作者认为ELMo使用两个单向语言模型分解的方式太粗暴,因此在第一阶段的预训练过程中,BERT提出替代语言模型,即类似完形填空的方式,通过本身来预测单词本身,而不是从右到左或从左到右建模,这允许模型能够自由地编码每个层中来自两个方向的信息。而为了学习句子的词序关系,BERT将Transformer中的三角函数位置表示替换为可学习的参数,其次为了区别单句和双句输入,BERT仍保留了句子类型表征。BERT的输入如图所示。因此,为了充分学习句子间的关系,具体来说,在训练时,句子对中的第二个句子有50%来自与本身的连续句子,而其余50%的句子则是通过在其他句子中随机采样。同时,消融实验也证明,这一预训练任务对句间关系判断任务有很大的贡献。除模型结构不同之外,BERT在预训练时使用的无标签数据规模要比GPT大的多。
在这里插入图片描述
在图所示,BERT与GPT不同,它极大的减少了改造下游任务的要求,只需在BERT模型的基础上,在第二阶段,与GPT相同,BERT也使用Fine-Tuning模式来微调下游任务。上,通过额外添加Linear分类器,就可以完成下游任务。具体而言,对于句间关系判断任务,与GPT类似,只是在句子之间加一个分隔符,然后在分开分别加上起始和终止符号。在进行输出时,只需把句子的起始符号[CLS]在BERT最后一层中对应的位置接一个Softmax + Linear分类层即可;对于单句分类问题,也与GPT类似,只需要在句子两段分别增加起始和终止符号,输出部分和句间关系判断任务保持一致即可;对于问答任务,由于需要输出答案在给定顺序的起始和终止位置,因此需要先将问题和这段按照句间关系判断任务构造输入,输出只需要在BERT最后一层中第二个句子,即该部分的每个单词对应的位置上分别接连判断起始和终止位置的分类器;最后,关于NLP中的序列标注问题,输入与单句分类任务一致,不同的是在BERT最后一层中每个单词对应的位置上接分类器即可。
在这里插入图片描述
更重要的是,BERT开启了NLP领域“预训练-微调”这种两阶段的全新范式。在第一阶段首先在海量无注明文本上预训练一个双向语言模型,此处特别注意的是,将Transformer作为特征提取器在解决双重性和长距离依赖问题上都要领先于传统的RNN或CNN,通过预训练的方式,可以将训练数据中的词法,句法,语法知识以网络参数的形式提炼到模型当中,在第二阶段使用下游任务的数据精细调整不同层数的BERT模型参数,或者把BERT目标特征提取器生成器嵌入,作为新特征发布下游任务。这种两阶段的全新范式甚至是来自于计算机视觉领域,但是在自然语言处理领域一直没有得到很好的运用,而BERT作为近些年NLP突破性进展的集大成者,最大的亮点可以说甚至在于模型性能好,并且几乎所有NLP任务都可以很方便地基于BERT进行改造,并且将预训练学到的语言学知识约会下游任务,进一步提升模型的性能。

基于Bert的文本分类

伯特预训练

首先从原始文本中创建训练数据,由于本次比赛的数据都是ID,在此重新建立了词表,并建立了基于空间的分词器。

class WhitespaceTokenizer(object):
    """WhitespaceTokenizer with vocab."""
    def __init__(self, vocab_file):
        self.vocab = load_vocab(vocab_file)
        self.inv_vocab = {v: k for k, v in self.vocab.items()}

    def tokenize(self, text):
        split_tokens = whitespace_tokenize(text)
        output_tokens = []
        for token in split_tokens:
            if token in self.vocab:
                output_tokens.append(token)
            else:
                output_tokens.append("[UNK]")
        return output_tokens

    def convert_tokens_to_ids(self, tokens):
        return convert_by_vocab(self.vocab, tokens)

    def convert_ids_to_tokens(self, ids):
        return convert_by_vocab(self.inv_vocab, ids)

预训练通过移除了NSP预训练任务,因此将文档处理多个最大长度为256的段,如果最后一个段的长度小于256/2则替换。然后处理成tfrecord格式。

def create_segments_from_document(document, max_segment_length):
    """Split single document to segments according to max_segment_length."""
    assert len(document) == 1
    document = document[0]
    document_len = len(document)

    index = list(range(0, document_len, max_segment_length))
    other_len = document_len % max_segment_length
    if other_len > max_segment_length / 2:
        index.append(document_len)

    segments = []
    for i in range(len(index) - 1):
        segment = document[index[i]: index[i+1]]
        segments.append(segment)

    return segments

在预训练过程中,也只执行执行语言模型任务,因此不再计算下一句预测任务的损失。

(masked_lm_loss, masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
    bert_config, model.get_sequence_output(), model.get_embedding_table(),
    masked_lm_positions, masked_lm_ids, masked_lm_weights)

total_loss = masked_lm_loss

为了适应句子的长度,以及细分模型的训练时间,我们采用了BERT-mini模型,详细配置如下。

{
  "hidden_size": 256,
  "hidden_act": "gelu",
  "initializer_range": 0.02,
  "vocab_size": 5981,
  "hidden_dropout_prob": 0.1,
  "num_attention_heads": 4,
  "type_vocab_size": 2,
  "max_position_embeddings": 256,
  "num_hidden_layers": 4,
  "intermediate_size": 1024,
  "attention_probs_dropout_prob": 0.1
}

由于我们的整体框架使用Pytorch,因此需要将最后一个检查点转换成Pytorch的权重。

def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
    # Initialise PyTorch model
    config = BertConfig.from_json_file(bert_config_file)
    print("Building PyTorch model from configuration: {}".format(str(config)))
    model = BertForPreTraining(config)

    # Load weights from tf checkpoint
    load_tf_weights_in_bert(model, config, tf_checkpoint_path)

    # Save pytorch-model
    print("Save PyTorch model to {}".format(pytorch_dump_path))
    torch.save(model.state_dict(), pytorch_dump_path)

预训练消耗的资源紧张,硬件条件允许的情况下建议直接下载开源的模型

伯特·菲尼特

在这里插入图片描述
微调将最后一层的第一个令牌即[CLS]的隐藏向量作为句子的表示,然后输入到softmax层进行分类。

sequence_output, pooled_output = \
    self.bert(input_ids=input_ids, token_type_ids=token_type_ids)

if self.pooled:
    reps = pooled_output
else:
    reps = sequence_output[:, 0, :]  # sen_num x 256

if self.training:
    reps = self.dropout(reps)
Pytorch是一个流行的深度学习框架,它在自然语言处理领域有着广泛的应用。在使用Pytorch进行自然语言处理时,可以利用Pytorch自带的Embedding层来对单词进行向量化编码,将词转换成词向量。需要注意的是,Embedding层的输入是一个tensor long类型,表示读取第几个tensor,等于token的数量。例如,可以使用nn.Embedding(2,5)来创建一个Embedding层,其中2表示查询表的大小,5表示词向量的维度。然后可以使用该Embedding层将一个单词转换成一个词向量,如embeds(word_to_ix["one"])。通过这种方式,可以将文本数据转化为可以输入到深度学习模型中进行训练的形式。在自然语言处理中,还需要使用其他必要的Python工具库,如os、numpy、pandas、matplotlib.pyplot、glob、random、time、torch等,来进行数据预处理、模型构建和结果可视化等操作。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [自然语言处理实战——Pytorch实现基于LSTM的情感分析(LMDB)——详细](https://blog.csdn.net/m0_53328738/article/details/128367345)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [Pytorch系列:(六)自然语言处理NLP](https://blog.csdn.net/weixin_43973207/article/details/117135671)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值