Leetcode 53. 最大子序和

题目

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

解答

解法一:暴力 O(n^2)

两层 for 循环,对每一个位置开始的子序列都进行计算最大值。
时间复杂度高,是 O(n^2) 级别。
但是简单,容易想到。

代码
class Solution {
    public int maxSubArray(int[] nums) {
        if(nums == null || nums.length == 0) return 0;
        int res = nums[0];
        for(int i = 0; i < nums.length; i ++) {
            int cur = 0;
            for(int j = i; j < nums.length; j ++) {
                cur += nums[j];
                res = Math.max(res, cur);
            }
        }
        
        return res;
    }
    
}
结果

在这里插入图片描述

解法二:动态规划 O(n)

当到达一个位置时,如果此时的子序列之和小于 0 的话,那么从当前位置开始的新子序列一定比保留原来的子序列的和更大。
递推公式:dp[i] = Math.max(dp[i - 1] + nums[i], nums[i])

代码
class Solution {
    public int maxSubArray(int[] nums) {
        if(nums == null || nums.length == 0) return 0;
        int res = nums[0];
        int cur = nums[0];
        for(int i = 1; i < nums.length; i ++) {
            if(cur <= 0) {
                cur = nums[i];
            } else {
                cur += nums[i];
            }
            
            res = Math.max(cur, res);
        }
        
        return res;
    }
}
结果

在这里插入图片描述

解法三:分治 O(nlogn)

将整个问题分解成三个子问题:

  1. 左部分找最大连续子序列和
  2. 右部分找最大连续子序列和
  3. 跨过 mid 的最大连续子序列和

找出三个子问题里最大的连续子序列和即可。

参考 B 站大佬:https://www.bilibili.com/video/av38950374

代码
class Solution {
    public int maxSubArray(int[] nums) {
        return find(nums, 0, nums.length - 1);
    }
    
    private int find(int[] nums, int start, int end) {
        if(start == end) {
            return nums[start];
        }
        
        if(start > end) {
            return Integer.MIN_VALUE;
        }
        
        int mid = start + (end - start) / 2;
        int leftMax = find(nums, start, mid - 1);
        int rightMax = find(nums, mid + 1, end);

        int ml = 0;
        for(int i = mid - 1, sum = 0; i >= start; i --) {
            sum += nums[i];
            ml = Math.max(ml, sum);
        }
        
        int mr = 0;
        for(int i = mid + 1, sum = 0; i <= end; i ++) {
            sum += nums[i];
            mr = Math.max(mr, sum);
        }

        return Math.max(Math.max(leftMax, rightMax), ml + mr + nums[mid]);
    }
}
结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值