Leetcode 94. 二叉树的中序遍历

题目

给定一个二叉树,返回它的中序 遍历。

示例:

输入: [1,null,2,3]
在这里插入图片描述
输出: [1,3,2]

进阶:

  • 递归算法很简单,你可以通过迭代算法完成吗?

解答

解法一:递归

递归遍历没什么难度,这里不细说了。

复杂度:O(n) 时间,O(n) 空间。

代码
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    
    
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        inOrder(root, res);
        return res;
    }
    
    
    private void inOrder(TreeNode node, List<Integer> res) {
        if(node == null) return;
        
        inOrder(node.left, res);
        res.add(node.val);
        inOrder(node.right, res);
    }
}
结果

在这里插入图片描述

解法二:栈

步骤如下:

  1. 把当前结点的所有左结点压栈。
  2. 弹栈时遍历弹出的结点(注意此时弹出的结点的左子树必然已经遍历完毕)。
  3. 然后对弹出结点的右节点继续遍历。

复杂度:O(n) 时间,O(n) 空间。

代码
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        LinkedList<TreeNode> stack = new LinkedList<>();

        TreeNode cur = root;
        while(cur != null || !stack.isEmpty()) {
            while(cur != null) {
                stack.push(cur);
                cur = cur.left;
            }

            cur = stack.pop();
            res.add(cur.val);
            cur = cur.right;
        }
        
        return res;
    }
}
结果

在这里插入图片描述

解法三:线索二叉树(Morris算法)

要点如下:

  1. 如果当前结点有左子树,那么将左子树的最右结点 pre.right 指向当前结点作为线索。

  2. 同时将当前结点的 cur.left = null ,目的是再次遍历到当前结点时,说明当前结点的左子树已经遍历完毕了。

优点是省掉了 O(n) 空间的栈,缺点是会改变树的结构。

复杂度:O(n) 时间,O(n) 空间。

代码
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        TreeNode cur = root;
        TreeNode pre;
        while(cur != null) {
            if(cur.left == null) {
                res.add(cur.val);
                cur = cur.right;
            } else {
                pre = cur.left;
                while(pre.right != null) {
                    pre = pre.right;
                }
                
                pre.right = cur;
                TreeNode temp = cur;
                cur = cur.left;
                temp.left = null;                
            }
        }
        
        return res;
    }
}
优化代码:不改变树的结构

大体思想是:当再次遍历到 cur 时,判断 cur 左子树的最右结点 pre.right 是否等于 cur ,从而判断其左子树是否已经全部遍历。

显而易见,时间上并没有改变树结构的方法高效。

但优点是遍历并不会改变树的结构!!!

只是遍历而已,却把树结构改变了是什么鬼 :)

我觉得还是有必要优化一下。。。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        TreeNode cur = root;
        TreeNode pre;
        while(cur != null) {
            if(cur.left == null) {
                res.add(cur.val);
                cur = cur.right;
            } else {
                pre = cur.left;
                while(pre.right != null && pre.right != cur) {
                    pre = pre.right;
                }
                
                if(pre.right == null) {
                    pre.right = cur; 
                    cur = cur.left;
                }
                
                if(pre.right == cur) {
                    pre.right = null;
                    res.add(cur.val);
                    cur = cur.right;
                }
            }
        }
        
        return res;
    }
}
结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值