BZOJ3626【LCT】

/* I will wait for you*/

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <deque>
#include <map>
#include <set>
#include <string>
#define m_p make_pair
#define p_b push_back
#define fi first
#define se second

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;

const int maxn = 100010;
const int maxm = 1010;
const int maxs = 26;
const int inf = 0x3f3f3f3f;
const int P = 201314;
const double error = 1e-9;

inline int read()
{
	int x = 0, f = 1;
	char ch = getchar();
	while (ch <= 47 || ch >= 58)
		f = (ch == 45 ? -1 : 1), ch = getchar();
	while (ch >= 48 && ch <= 57)
		x = x * 10 + ch - 48, ch = getchar();
	return x * f;
}

struct node
{
	ll sum, add, key, size;
	node *fa, *son[2];

	int  isroot() {
		return !fa || this != fa -> son[0] && this != fa -> son[1];
	}
	int dir() {
		return this == fa -> son[1];
	}
} no[maxn];

void pushdown(node* o)
{
	if (o -> add) {
		for (int i = 0; i < 2; i++)
			if (o -> son[i])
				o -> son[i] -> add += o -> add;
		(o -> sum += o -> size * o -> add) %= P;
		(o -> key += o -> add) %= P, o -> add = 0;
	}
}

void maintain(node* o)
{
	o -> sum = o -> key, o -> size = 1;
	for (int i = 0; i < 2; i++)
		if (o -> son[i]) {
			pushdown(o -> son[i]);
			(o -> sum += o -> son[i] -> sum) %= P;
			o -> size += o -> son[i] -> size;
			o -> son[i] -> fa = o;
		}
}

void rotate(node* o)
{
	node *p = o -> fa;
	pushdown(p), pushdown(o);
	int d = o -> dir();
	p -> son[d] = o -> son[d ^ 1];
	o -> son[d ^ 1] = p;
	o -> fa = p -> fa;
	if (!p -> isroot())
		p -> fa -> son[p -> dir()] = o;
	maintain(p), maintain(o);
}

void splay(node* o)
{
	pushdown(o);
	while (!o -> isroot()) {
		node *p = o -> fa;
		if (p -> isroot())
			rotate(o);
		else if (o -> dir() == p -> dir())
			rotate(p), rotate(o);
		else 
			rotate(o), rotate(o);
	}
}

void access(node *o)
{
	for (node *t = 0; o; t = o, o = o -> fa)
		splay(o), o -> son[1] = t, maintain(o);
}

void increase(node* u)
{
	access(u), splay(u), u -> add += 1;
}

ll query(node* u)
{
	access(u), splay(u), pushdown(u);
	return u -> sum;
}

void link(node *u, node *v)
{
	u -> fa = v;
}

struct ask
{
	int fi, se, th;
};

vector<ask> s[maxn]; ll ans[maxn];

int main()
{
	int n = read(), m = read();

	for (int i = 1; i <= n; i++)
		no[i].size = 1;

	for (int i = 2, u; i <= n; i++)
		u = read() + 1, link(&no[i], &no[u]);

	for (int i = 1; i <= m; i++) {
		int x = read(), y = read() + 1, z = read() + 1;
		s[x].p_b((ask) {z, -1, i});
	       	s[y].p_b((ask) {z, 1, i});
	}

	for (int i = 1; i <= n; i++) {
		increase(&no[i]);
		for (int j = 0; j < s[i].size(); j++) {
			ask tmp = s[i][j];
			ans[tmp.th] += (ll) tmp.se * query(&no[tmp.fi]);
			((ans[tmp.th] %= P) += P) %= P;
		}
	}

	for (int i = 1; i <= m; i++)
		printf("%d\n", ans[i]);

	return 0;
}

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值