《离散数学及其应用》【张清华版】 第四章习题总结

本文详尽证明了集合上关系的逆、交、并运算的性质,以及自反、反自反、对称、反对称和传递性的相关结论。通过反证法和构造映射展示了关系的子集在这些性质上的保持性,同时阐述了可数集合的并集和对偶运算的可数性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


8. 设 R 1 、 R 2 R_1、R_2 R1R2为集合A上的关系,证明:

  1. ( R 1 ∪ R 2 ) − 1 = R 1 − 1 ∪ R 2 − 1 (R_1\cup R_2)^{-1} = R_1^{-1}\cup R_2^{-1} (R1R2)1=R11R21
  2. ( R 1 ∩ R 2 ) − 1 = R 1 − 1 ∩ R 2 − 1 (R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1} (R1R2)1=R11R21

解答:

8.1

∀ < x , y > ∈ ( R 1 ∪ R 2 ) − 1 ⇔ < y , x > ∈ R 1 ∪ R 2 ⇔ < y , x > ∈ R 1 ∨ < y , x > ∈ R 2 ⇔ < x , y > ∈ R 1 − 1 ∨ < x , y > ∈ R 2 − 1 ⇔ < x , y > ∈ R 1 − 1 ∪ R 2 − 1 \begin{array}{l} \forall <x,y> \in (R_1\cup R_2)^{-1} \\ \Leftrightarrow <y,x> \in R_1 \cup R_2 \\ \Leftrightarrow <y,x> \in R_1 \lor <y,x> \in R_2\\ \Leftrightarrow <x,y> \in R_1^{-1} \lor <x,y> \in R_2 ^{-1}\\ \Leftrightarrow<x,y> \in R_1^{-1} \cup R_2^{-1} \end{array} <x,y>(R1R2)1<y,x>R1R2<y,x>R1<y,x>R2<x,y>R11<x,y>R21<x,y>R11R21

8.2

∀ < x , y > ∈ ( R 1 ∩ R 2 ) − 1 ⇔ < y , x > ∈ R 1 ∩ R 2 ⇔ < y , x > ∈ R 1 ∧ < y , x > ∈ R 2 ⇔ < x , y > ∈ R 1 − 1 ∧ < x , y > ∈ R 2 − 1 ⇔ < x , y > ∈ R 1 − 1 ∩ R 2 − 1 \begin{array}{l} \forall <x,y> \in (R_1\cap R_2)^{-1} \\ \Leftrightarrow <y,x> \in R_1 \cap R_2 \\ \Leftrightarrow <y,x> \in R_1 \land <y,x> \in R_2\\ \Leftrightarrow <x,y> \in R_1^{-1} \land <x,y> \in R_2 ^{-1}\\ \Leftrightarrow<x,y> \in R_1^{-1} \cap R_2^{-1} \end{array} <x,y>(R1R2)1<y,x>R1R2<y,x>R1<y,x>R2<x,y>R11<x,y>R21<x,y>R11R21


12. 设 R 1 , R 2 R_1,R_2 R1,R2为集合A上的任意两个关系,判断下列结论是否成立,若成立,请证明之,若不成立,请举反例说明

  1. R 1 、 R 2 R_1、R_2 R1R2自反,则 R 1 ∩ R 2 R_1 \cap R_2 R1R2也自反
  2. R 1 、 R 2 R_1、R_2 R1R2反自反,则 R 1 ∪ R 2 R_1\cup R_2 R1R2 也反自反
  3. R 1 、 R 2 R_1、R_2 R1R2对称,则 R 1 − R 2 R_1 - R_2 R1R2也对称
  4. R 1 、 R 2 R_1、R_2 R1R2反对称,则 R 1 − R 2 R_1 - R_2 R1R2也反对称
  5. R 1 、 R 2 R_1、R_2 R1R2传递,则 R 1 ∘ R 2 R_1 \circ R_2 R1R2也传递

解答:

12.1

∵ ∀ x ∈ A 且 R 1 反 自 反 ⇔ ∀ < x , x > ∈ R 1 ∀ x ∈ A 且 R 2 反 自 反 ⇔ ∀ < x , x > ∈ R 2 ∴ ∀ < x , x > ∈ R 1 ∩ R 2 ∴ R 1 ∩ R 2 自 反 \begin{array}{l} \because \\ \forall x \in A 且 R_1反自反 \Leftrightarrow \forall <x,x> \in R_1\\ \forall x \in A 且 R_2反自反 \Leftrightarrow \forall <x,x> \in R_2 \\ \therefore \forall <x,x> \in R_1 \cap R_2\\ \therefore R_1 \cap R_2自反 \end{array} xAR1<x,x>R1xAR2<x,x>R2<x,x>R1R2R1R2

12.2

反证法
若 ∃ x ∈ A , 有 s . t . < x , x > ∈ R 1 ∪ R 2 ⇒ < x , x > ∈ R 1 ∨ < x , x > ∈ R 2 与 R 1 , R 2 反 自 反 相 矛 盾 故 可 证 : R 1 、 R 2 反 自 反 , 则 R 1 ∪ R 2 也 反 自 反 \begin{array}{l} 若\exists x \in A, 有 \\ s.t. <x,x> \in R_1 \cup R_2 \\ \Rightarrow <x,x> \in R_1 \lor <x,x> \in R_2 \\ 与R_1,R_2反自反相矛盾 \\ 故可证: \\ R_1、R_2反自反,则R_1\cup R_2也反自反 \end{array} xA,s.t.<x,x>R1R2<x,x>R1<x,x>R2R1,R2:R1R2R1R2

12.3

< x , y > ∈ R 1 − R 2 ⇒ < x , y > ∈ R 1 ∧ < x , y > ∉ R 2 ⇒ < y , x > ∈ R 1 ∧ < y , x > ∉ R 2 ( R 1 、 R 2 对 称 ) ⇒ < y , x > ∈ R 1 − R 2 \begin{array}{l} <x,y> \in R_1 - R_2 \\ \Rightarrow <x,y>\in R_1 \land <x,y> \notin R_2 \\ \Rightarrow <y,x> \in R_1 \land <y,x> \notin R_2 (R_1、R_2对称)\\ \Rightarrow <y,x> \in R_1 - R_2 \end{array} <x,y>R1R2<x,y>R1<x,y>/R2<y,x>R1<y,x>/R2(R1R2)<y,x>R1R2

12.4

12.3,12.4举一反例证明即可

R 1 = { < 1 , 2 > , < 3 , 4 > } ( 反 对 称 ) R 2 = { < 2 , 3 > , < 4 , 1 > } ( 反 对 称 ) R 1 ∘ R 2 = { < 1 , 3 > , < 3 , 1 > } ( 对 称 ) 故 结 论 不 成 立 \begin{array}{l} R_1 = \{< 1, 2> , < 3, 4>\}(反对称)\\ R_2 = \{<2,3>,<4,1>\}(反对称)\\ R_1 \circ R_2 = \{<1,3>,<3,1>\}(对称)\\ 故结论不成立 \end{array} R1={<1,2>,<3,4>}()R2={<2,3>,<4,1>}()R1R2={<1,3>,<3,1>}()

12.5

R 1 = { < 1 , 2 > , < 3 , 4 > } ( 传 递 ) R 2 = { < 2 , 3 > , < 4 , 1 > } ( 传 递 ) R 1 ∘ R 2 = { < 1 , 3 > , < 3 , 1 > } ( 非 传 递 ) 故 结 论 不 成 立 \begin{array}{l} R_1 = \{< 1, 2> , < 3, 4>\}(传递)\\ R_2 = \{<2,3>,<4,1>\}(传递)\\ R_1 \circ R_2 = \{<1,3>,<3,1>\}(非传递)\\ 故结论不成立 \end{array} R1={<1,2>,<3,4>}()R2={<2,3>,<4,1>}()R1R2={<1,3>,<3,1>}()


15. 设 R 1 , R 2 R_1,R_2 R1,R2为集合A上的两个关系,且 R 1 ⊆ R 2 R_1 \subseteq R_2 R1R2,试证:

  1. r ( R 1 ) ⊆ r ( R 2 ) r(R_1) \subseteq r(R_2) r(R1)r(R2)
  2. s ( R 1 ) ⊆ s ( R 2 ) s(R_1) \subseteq s(R_2) s(R1)s(R2)
  3. t ( R 1 ) ⊆ t ( R 2 ) t(R_1) \subseteq t(R_2) t(R1)t(R2)

解答:

15.1

r ( R 1 ) = R 1 ∪ I A ⊆ R 2 ∩ I A = r ( R 2 ) \begin{array}{l} r(R_1) = R_1 \cup I_A \subseteq R_2 \cap I_A = r (R_2) \end{array} r(R1)=R1IAR2IA=r(R2)

15.2

R 1 ⊆ R 2 ⇒ R 1 − 1 ⊆ R 2 − 1 ⇒ R 1 ∪ R 1 − 1 ⊆ R 2 ∪ R 2 − 1 ⇒ s ( R 1 ) ⊆ s ( R 2 ) \begin{array}{l} R_1 \subseteq R_2 \\ \Rightarrow R_1^{-1} \subseteq R_2^{-1}\\ \Rightarrow R_1 \cup R_1^{-1} \subseteq R_2 \cup R_2^{-1} \\ \Rightarrow s(R_1) \subseteq s(R_2) \end{array} R1R2R11R21R1R11R2R21s(R1)s(R2)

15.3

t ( R 1 )    =    ⋃ i    =    0 ∞ R 1 i ⇒ ∀ < x , y > ∈ R 1 i = R 1 i − 1 ∘ R 1 ⇒ ∃ t 1 ∈ A s . t . < x 1 , t 1 > ∈ R 1 i − 1 ∧ < t 1 , y > ∈ R 1 ⇒ ∃ t 1 , t 2 ∈ A s . t . < x 1 , t 1 > ∈ R 1 i − 2 ∧ < t 1 , t 2 > ∈ R 1 ∧ < t 2 , y > ∈ R 1 ⇒ ∃ t 1 , t 2 , t 3 . . . t i − 1 ∈ A s . t . < x 1 , t 1 > ∈ R 1 ∧ < t 1 , t 2 > ∈ R 1 ∧ < t 2 , t 3 > ∈ R 1 ∧ . . . < t i − 1 , y > ∈ R 1 ( 共 i 项 ) ∵ R 1 ⊆ R 2 , t ( R 2 )    =    ⋃ i    =    0 ∞ R 2 i ⇒ ∃ t 1 , t 2 , t 3 . . . t i − 1 ∈ A s . t . < x 1 , t 1 > ∈ R 2 ∧ < t 1 , t 2 > ∈ R 2 ∧ < t 2 , t 3 > ∈ R 2 ∧ . . . < t i − 1 , y > ∈ R 2 ( 共 i 项 ) ⇒ < x , y > ∈ R 2 i ⇒ R 1 i ⊆ R 2 i ⇒ t ( R 1 ) ⊆ t ( R 2 ) \begin{array}{l} t\left( R_1 \right) \,\,=\,\,\bigcup_{i\,\,=\,\,0}^{\infty}{R_{1}^{i}} \\ \Rightarrow \forall<x,y> \in R_{1}^{i} = R_{1}^{i-1} \circ R_1 \\ \Rightarrow \exists t_1 \in A \quad s.t. <x_1, t_1> \in R_{1}^{i-1} \land <t_1, y> \in R_1 \\ \Rightarrow \exists t_1,t_2 \in A \quad s.t. <x_1, t_1> \in R_{1}^{i-2} \land <t_1, t_2> \in R_1 \land <t_2, y> \in R_1 \\ \Rightarrow \exists t_1,t_2,t_3...t_{i-1} \in A \quad s.t. <x_1, t_1> \in R_{1} \land <t_1, t_2> \in R_1 \land <t_2, t_3> \in R_1 \land ... <t_{i-1}, y> \in R_1 (共i项) \\ \\ \because R_1 \subseteq R_2 , \quad t\left( R_2 \right) \,\,=\,\,\bigcup_{i\,\,=\,\,0}^{\infty}{R_{2}^{i}} \\ \\ \Rightarrow \exists t_1,t_2,t_3...t_{i-1} \in A \quad s.t. <x_1, t_1> \in R_{2} \land <t_1, t_2> \in R_2 \land <t_2, t_3> \in R_2 \land ... <t_{i-1}, y> \in R_2 (共i项) \\ \Rightarrow <x,y> \in R_{2}^{i} \\ \Rightarrow R_{1}^{i} \subseteq R_{2}^{i} \\ \Rightarrow t(R_1) \subseteq t(R_2) \\ \\ \\ \end{array} t(R1)=i=0R1i<x,y>R1i=R1i1R1t1As.t.<x1,t1>R1i1<t1,y>R1t1,t2As.t.<x1,t1>R1i2<t1,t2>R1<t2,y>R1t1,t2,t3...ti1As.t.<x1,t1>R1<t1,t2>R1<t2,t3>R1...<ti1,y>R1(i)R1R2,t(R2)=i=0R2it1,t2,t3...ti1As.t.<x1,t1>R2<t1,t2>R2<t2,t3>R2...<ti1,y>R2(i)<x,y>R2iR1iR2it(R1)t(R2)


33. 设A,B都是可数集合,证明:

  1. A ∪ B A \cup B AB是可数集合
  2. A ⊕ B A \oplus B AB是可数集合

解答:

33.1

设 A = { a 1 , a 2 , a 3 . . . } 为 可 数 集 合 ∵ B 是 可 数 集 合 且 可 数 集 合 的 子 集 亦 是 可 数 集 ∴ B − A = { b 1 , b 2 , b 3 , . . . } 为 可 数 集 合 ∴ A ∪ B = A ∪ ( B − A ) 为 可 数 集 合 下 面 构 造 A ∪ B 到 自 然 数 集 N 的 映 射 : ∵ A ∪ B    =    { a 1 , a 2 , a 3 , . . . b 1 , b 2 , b 3 , . . . 我 们 构 造 f 将 a i 映 射 到 自 然 数 集 中 的 奇 数 , 将 b i 映 射 到 自 然 数 集 中 的 偶 数 , 则 有 : f ( x )    =    { 2 i    −    1 , x    =    a i 2 i    −    2 , x    =    b i    , ( i ∈ N ∗ ) 可 构 造 f : A ∪ B → N A ∪ B 为 可 数 集 合 \begin{array}{l} 设 A= \{a_1,a_2, a_3 ...\} 为可数集合\\ \because B 是可数集合\\ 且 \quad 可数集合的子集亦是可数集\\ \therefore B - A = \{b_1, b_2, b_3, ...\} 为可数集合\\ \therefore A\cup B = A \cup(B-A) 为可数集合\\ \\ 下面构造A\cup B到自然数集N的映射:\\ \\ \because A\cup B\,\,=\,\,\begin{cases} a_1, a_2, a_3, ...\\ b_1, b_2, b_3, ...\\ \end{cases}\\ \\ 我们构造f将a_i映射到自然数集中的奇数,将b_i映射到自然数集中的偶数,则有:\\ \\ f\left( x \right) \,\,=\,\,\begin{cases} 2i\,\,-\,\,1, x\,\,=\,\,a_i\\ 2i\,\,-\,\,2, x\,\,=\,\,b_i\\ \end{cases}\,\,, \left( i\in N^* \right) \\ \\ 可构造 f:A\cup B\rightarrow N\\ A\cup B 为可数集合 \end{array} A={a1,a2,a3...}BBA={b1,b2,b3,...}AB=A(BA)ABN:AB={a1,a2,a3,...b1,b2,b3,...faibi:f(x)={2i1,x=ai2i2,x=bi,(iN)f:ABNAB

33.2

∵ A ∪ B ⊆ A ⊕ B 且 A ∪ B 是 可 数 集 合 ( 可 数 集 合 的 子 集 亦 是 可 数 集 ) ∴ A ⊕ B 是 可 数 集 合 \begin{array}{l} \because A \cup B \subseteq A \oplus B \\ 且 A \cup B 是可数集合\\ (可数集合的子集亦是可数集) \\ \therefore A \oplus B是可数集合 \end{array} ABABAB()AB


为了让读者看清楚,用Latex公式打了一个下午 T-T,创作不易,点个赞再走呗 😃


写在最后

注:本文实例选自《离散数学及其应用》 张清华、蒲兴成等编,有些习题在原书后面部分有详细答案,这里不再多赘述

各位看官,都看到这里了,麻烦动动手指头给博主来个点赞8,您的支持作者最大的创作动力哟!
<(^-^)>
才疏学浅,若有纰漏,恳请斧正
本文章仅用于各位同志作为学习交流之用,不作任何商业用途,若涉及版权问题请速与作者联系,望悉知

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值