【LeetCode1447.最简分数】从最简分数到辗转相除法的证明及算法实现

本文详细分析了LeetCode1447题目的解题思路,主要涉及最简分数的定义与辗转相除法。通过辗转相除法判断两个数字的最大公约数是否为1,从而确定分数是否不可约分。此外,还提供了Go语言的代码实现,将计算结果转化为字符串输出。
摘要由CSDN通过智能技术生成

LeetCode1447.最简分数

给你一个整数 n n n ,请你返回所有 0 0 0 1 1 1 之间(不包括 0 0 0 1 1 1)满足分母小于等于 n n n 的 最简分数 。分数可以以任意顺序返回。

示例 1:
输入:n = 2
输出:[“1/2”]
解释:“1/2” 是唯一一个分母小于等于 2 的最简分数。

题目分析

这道题目可以拆解成为两部分.

  1. 如何确定最简分数
  2. 如何返回结果的形式

具体解析通过下一小节知识点总结.

知识点总结

辗转相除法

想要找到最终中间所有的最简的分数,那么分子和分母需要满足不可约分.
两个数字 n u m 1 num1 num1 n u m 2 num2 num2 不可约分等价于 n u m 1 num1 num1 n u m 2 num2 num2 的最大公约数为 1.
也就是说它们两个不能同时被除 1 1 1 以外的任何数字整除.(否则就能够被约分了!)
问题也就转换成为如何判断两个数字的最大公约数gcd

定理: 对于两个正整数 a a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值