【LeetCode1447.最简分数】从最简分数到辗转相除法的证明及算法实现

本文详细分析了LeetCode1447题目的解题思路,主要涉及最简分数的定义与辗转相除法。通过辗转相除法判断两个数字的最大公约数是否为1,从而确定分数是否不可约分。此外,还提供了Go语言的代码实现,将计算结果转化为字符串输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeetCode1447.最简分数

给你一个整数 n n n ,请你返回所有 0 0 0 1 1 1 之间(不包括 0 0 0 1 1 1)满足分母小于等于 n n n 的 最简分数 。分数可以以任意顺序返回。

示例 1:
输入:n = 2
输出:[“1/2”]
解释:“1/2” 是唯一一个分母小于等于 2 的最简分数。

题目分析

这道题目可以拆解成为两部分.

  1. 如何确定最简分数
  2. 如何返回结果的形式

具体解析通过下一小节知识点总结.

知识点总结

辗转相除法

想要找到最终中间所有的最简的分数,那么分子和分母需要满足不可约分.
两个数字 n u m 1 num1 num1 n u m 2 num2 num2 不可约分等价于 n u m 1 num1 num1 n u m 2 num2 num2 的最大公约数为 1.
也就是说它们两个不能同时被除 1 1 1 以外的任何数字整除.(否则就能够被约分了!)
问题也就转换成为如何判断两个数字的最大公约数gcd

定理: 对于两个正整数 a a a, b b b,满足 a a a > b b b, 有 g c d ( a , b ) = g c d ( b , a % b ) gcd(a, b) = gcd(b, a\%b) gcd(a,b)=gcd(b,a%b)成立
证明: 假设 a = k ∗ b + r a =k* b + r a=kb+r,则有 r = a % b r = a \% b r=a%b,同时 r = a − k ∗ b r = a - k * b r=akb
假设 d d d a a a, b b b 的最大公约数,那么 d d d 也是 r r r 的一个约数.
所以 d d d 也是 b b b r r r 的最大公约数

a = x ∗ d a = x * d a=xd, b = y ∗ d b = y * d b=yd
r = a − k ∗ b = x ∗ d − y ∗ d = ( x − y ) ∗ d r = a - k * b = x * d - y * d = (x - y) * d r=akb=xdyd=(xy)d
备注: a a a > b b b --> x − y > 0 x - y > 0 xy>0

代码实现:

func gcd(a, b int) int {
	for b != 0 {
		b, a = a % b, b 
	}
	return a
}

数字转字符串

strconv.Itoa(num)

Go代码实现

func simplifiedFractions(n int) (ans []string) {
    for denominator := 2; denominator <= n; denominator++ {
        for numerator := 1; numerator < denominator; numerator++ {
            if gcd(numerator, denominator) == 1 {
                ans = append(ans, strconv.Itoa(numerator)+"/"+strconv.Itoa(denominator))
            }
        }
    }
    return
}

func gcd(a, b int) int {
    for b != 0 {
        b, a = a % b, b
    }
    return a
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值