第十二周 项目(3)

问题及描述:

     

/*  
烟台大学计算机学院  
  
文件名称:xia1gmu.cpp  
  
作者:范宝磊
完成日期:2017年11月19日  
  
问题描述:Dijkstra算法的验证 
  
输入描述:无 
  
输出描述:某一顶点到其他各点最短路径 
用到了graph.h 
  
*/   
  
  
  
#include <stdio.h>  
#include <malloc.h>  
#include "graph.h"  
#define MaxSize 100  
void Ppath(int path[],int i,int v)  //前向递归查找路径上的顶点  
{  
    int k;  
    k=path[i];  
    if (k==v)  return;          //找到了起点则返回  
    Ppath(path,k,v);            //找顶点k的前一个顶点  
    printf("%d,",k);            //输出顶点k  
}  
void Dispath(int dist[],int path[],int s[],int n,int v)  
{  
    int i;  
    for (i=0; i<n; i++)  
        if (s[i]==1)  
        {  
            printf("  从%d到%d的最短路径长度为:%d\t路径为:",v,i,dist[i]);  
            printf("%d,",v);    //输出路径上的起点  
            Ppath(path,i,v);    //输出路径上的中间点  
            printf("%d\n",i);   //输出路径上的终点  
        }  
        else  printf("从%d到%d不存在路径\n",v,i);  
}  
void Dijkstra(MGraph g,int v)  
{  
    int dist[MAXV],path[MAXV];  
    int s[MAXV];  
    int mindis,i,j,u;  
    for (i=0; i<g.n; i++)  
    {  
        dist[i]=g.edges[v][i];      //距离初始化  
        s[i]=0;                     //s[]置空  
        if (g.edges[v][i]<INF)      //路径初始化  
            path[i]=v;  
        else  
            path[i]=-1;  
    }  
    s[v]=1;  
    path[v]=0;              //源点编号v放入s中  
    for (i=0; i<g.n; i++)               //循环直到所有顶点的最短路径都求出  
    {  
        mindis=INF;                 //mindis置最小长度初值  
        for (j=0; j<g.n; j++)       //选取不在s中且具有最小距离的顶点u  
            if (s[j]==0 && dist[j]<mindis)  
            {  
                u=j;  
                mindis=dist[j];  
            }  
        s[u]=1;                     //顶点u加入s中  
        for (j=0; j<g.n; j++)       //修改不在s中的顶点的距离  
            if (s[j]==0)  
                if (g.edges[u][j]<INF && dist[u]+g.edges[u][j]<dist[j])  
                {  
                    dist[j]=dist[u]+g.edges[u][j];  
                    path[j]=u;  
                }  
    }  
    Dispath(dist,path,s,g.n,v);     //输出最短路径  
}  
  
int main()  
{  
    MGraph g;  
    int A[7][7]=  
    {  
        {0,4,6,6,INF,INF,INF},  
        {INF,0,1,INF,7,INF,INF},  
        {INF,INF,0,INF,6,4,INF},  
        {INF,INF,2,0,INF,5,INF},  
        {INF,INF,INF,INF,0,INF,6},  
        {INF,INF,INF,INF,1,0,8},  
        {INF,INF,INF,INF,INF,INF,0}  
    };  
    ArrayToMat(A[0], 7, g);  
    Dijkstra(g,0);  
    return 0;  
}  

运行结果:
     
     

学习心得:

这次的练习,我 学会了如何使用狄克斯特拉算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值