题目链接:点击打开链接
根据题意,只有成行或成列的同种颜色块可以组成一个集合
因此对于某行或某列,其形成的集合数即其所有取非0时的组合数的和
所以对于数目为n的某行或某列,其可以形成的组合数为2^n - 1
故只需在输入时统计其相同颜色数目即可
AC代码如下
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
long long M[51];
void solve()
{
M[0] = 1;
for(int i=1;i<=50;++i)
{
M[i] = M[i-1]*(long long)2;
//cout<<M[i]<<endl;
}
}
int main()
{
solve();
long long cnt[51][4];
int n, m;
while(scanf("%d %d",&n,&m)!=-1)
{
memset(cnt,0,sizeof(cnt));
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
{
int temp;
scanf("%d",&temp);
if(temp) cnt[i][2]++, cnt[j][3]++;
else cnt[i][0]++, cnt[j][1]++;
}
long long ans = 0;
for(int i=1;i<=n;++i)
{
if(cnt[i][0]) ans +=(long long)M[cnt[i][0]] - 1;
if(cnt[i][2]) ans +=(long long)M[cnt[i][2]] - 1;
}
for(int i=1;i<=m;++i)
{
if(cnt[i][1]) ans +=(long long)M[cnt[i][1]] - 1;
if(cnt[i][3]) ans +=(long long)M[cnt[i][3]] - 1;
}
printf("%I64d\n",ans-n*m);
}
return 0;
}