Codeforces Round #465 (Div. 2) C. Fifa and Fafa

29 篇文章 0 订阅
3 篇文章 0 订阅

题目链接:点击打开链接

题意:给定一个圆位于(x1, y1),半径为R,再给定平面上任意一点(x2, y2),在圆内找一点画一个半径为r的圆,使得该圆将该点包含在园内(可以在边界)且使得大圆内不属于小圆部分面积最小。

思路:若(x2, y2)在圆外,则所求圆即大圆。若(x2, y2)在圆内,则所求圆圆心在(x2, y2)与大圆圆心连线处。采用二分法寻找小圆圆心与(x2, y2)的距离(即半径r),使得r最大。计算坐标使用向量的方法。

AC代码:

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <string>
#include <vector>

using namespace std;

#define FSIO  ios::sync_with_stdio(0);cin.tie(0);
#define DEBUG(a)   cout<<"DEBUG: "<<(a)<<endl;

double R, x1, y1, x2, y2;
double dx, dy, dd;
double r, x, y;

int judge(double rr)
{
    if(R*R-(rr-dd)*(rr-dd)>=rr*rr)
    {
        if(rr>=dd&&(R+dd)>=rr*2.0)  return 1;
        else if(rr<dd&&rr<R)    return 1;
        else return 0;
    }
    else    return 0;
}

int main()
{

    FSIO;
    while(cin>>R>>x1>>y1>>x2>>y2)
    {
        dx = x2 - x1;
        dy = y2 - y1;
        dd = sqrt(dx*dx + dy*dy);
        if(dd>=R)   {printf("%.8f %.8f %.8f\n",x1,y1,R);continue;}
        double l = 0, ri = R, mid = 0;
        for(int i=1;i<=1000000;++i)
        {
            mid = (l+ri)/2.0;
            if(judge(mid))  l = mid;
            else    ri = mid;
        }
        r = mid;
        x = x2 - dx*r/dd;
        y = y2 - dy*r/dd;
        if(fabs(dx)<=1e-6&&fabs(dy)<=1e-6)  dx = 1.0, dd=1.0;
        x = x2 - dx*r/dd;
        y = y2 - dy*r/dd;
        double a=x, b = y;
        printf("%.8f %.8f %.8f\n",x,y,r);
        //cout<<x<<" "<<y<<" "<<r<<endl;
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值