计算机视觉是一门研究如何使计算机能够理解和解释图像和视频的学科。它借助计算机科学、图像处理、模式识别和机器学习等技术,旨在使计算机系统能够模拟人类视觉系统的功能。计算机视觉广泛应用于各个领域,包括图像检测、人脸识别、目标跟踪、自动驾驶等。
计算机视觉的基本任务是对图像进行分析和理解。这包括如下几个主要方面:
-
图像获取和预处理:计算机视觉的第一步是获取图像数据。这可以通过摄像头、传感器或从存储设备中读取图像文件来实现。获取到的图像可能需要进行预处理,如去噪、图像增强、尺寸调整等,以提高后续处理的效果和准确性。
-
特征提取:在计算机视觉中,特征是指图像中的可区分信息,如边缘、颜色、纹理等。特征提取是计算机视觉的核心任务之一,它通过算法和技术从图像中提取出具有辨识度的特征,以便后续的目标识别和分类。
下面是一个简单的示例代码,演示了如何使用Python和OpenCV库进行图像灰度化和边缘检测的特征提取:
import cv2 # 读取图像 image = cv2.imread